Study on Theoretical Basis and Process Optimization for Solar Grade Silicon Fabrication

2010 ◽  
Vol 663-665 ◽  
pp. 1069-1072
Author(s):  
Yong Chao Gao ◽  
Bai Tong Zhao

As solar energy is inexhaustible, solar cells have become one of the options to the future energy. The raw material silicon as one of the Earth's most abundant resources elements, have the advantage of non-toxic, no pollution, no radiation, high photoelectric conversion efficiency, stability and reliability of optical performance become the main raw material for production of solar cells. Because of its supply is limited, We used relatively inexpensive metallurgical grade silicon as a starting material to produce solar grade silicon for solar cells is considered relatively inexpensive method. Therefore, the removal of impurities from metal silicon witch reduce solar cell carrier lifetime and thus reducing its power generation efficiency is a significant issue. To this end, according to impurities in molten silicon and solid silicon demonstrated various characteristics and existence forms, in this paper we used acid leaching, directional solidification, electron and magnetic field, vacuum melting, blow reactive gases and so on to fabricate solar grade silicon from metal silicon in theory to analyze and optimize process.

2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


2011 ◽  
Vol 216 ◽  
pp. 355-359 ◽  
Author(s):  
Hui Zhong ◽  
Yong Yi Gao ◽  
Ren Long Zhou ◽  
Bing Ju Zhou ◽  
Li Qiang Tang ◽  
...  

The effect of grating structure on the photoelectric conversion efficiency of solar cells is studied with the finite-difference time-domain method. The influence of grating shape, height and the thickness of coated metal film is analysed. It is found that the variation of grating shape and height makes great changes of energy storage, especially of the photoelectric conversion efficiency and energy storage of the triangle grating. The comparison between un-optimized and optimized surface grating structure on solar cells shows that the optimized grating surface significantly increases the energy storage capability and greatly improves the efficiency.


2012 ◽  
Vol 430-432 ◽  
pp. 631-635
Author(s):  
Shu Hong Liu ◽  
Gui Shan Liu ◽  
Xiao Yue Shen ◽  
Zhi Qiang Hu

The carbon counter electrodes for Dye-sensitized solar cells (DSSCs) were deposited on FTO glass using graphite target by bipolar pulse magnetron sputtering. The effects of sputtering pressure on the structures and properties for carbon films were investigated. The carbon bond structure was analyzed by Raman spectra. The sheet resistance of carbon film was detected by four-probe tester. The transmittance was tested by UV-visible spectrum. The performance of DSSCs was tested by solar simulator after the cells assembled. The results indicated that the ratio of ID/IG reduced, the degree of graphitization decreased, sheet resistance raised, transmittance increased and photoelectric conversion efficiency reduced with the increasing of sputtering pressure.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


2012 ◽  
Vol 629 ◽  
pp. 332-338 ◽  
Author(s):  
Zhi Hua Tian ◽  
Jian Xi Yao ◽  
Mi Na Guli

TiO2 films with three-dimensional web-like structure have been prepared by the photo polymerization-induced phase separation method (PIPS). Scanning electron microscopy and X-ray diffraction were used to characterize the as-prepared TiO2 films. The results showed that the film texture could be tuned by changing the composition of the precursor solution. The TiO2 film with web-like structure exhibited high photocatalytic activity for the degradation of methylene blue (MB) dye. The as-prepared films were used as the photo-anodes in dye-sensitized solar cells (DSCs). The photoelectric conversion efficiency of the DSCs was significantly enhanced by changing the POGTA/TTB in the precursor solution. Because of the increased dye adsorption active sites and efficient electron transport in the TiO2 anode film, a photoelectric conversion efficiency of 3.015% was obtained.


Coatings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 978
Author(s):  
Chaoqun Lu ◽  
Weijia Zhang ◽  
Zhaoyi Jiang ◽  
Yulong Zhang ◽  
Cong Ni

The hole transport layer (HTL) is one of the main factors affecting the efficiency and stability of perovskite solar cells (PSCs). However, obtaining HTLs with the desired properties through current preparation techniques remains a challenge. In the present study, we propose a new method which can be used to achieve a double-layer HTL, by inserting a CuI layer between the perovskite layer and Spiro-OMeTAD layer via a solution spin coating process. The CuI layer deposited on the surface of the perovskite film directly covers the rough perovskite surface, covering the surface defects of the perovskite, while a layer of CuI film avoids the defects caused by Spiro-OMetad pinholes. The double-layer HTLs improve roughness and reduce charge recombination of the Spiro-OMeTAD layer, thereby resulting in superior hole extraction capabilities and faster hole mobility. The CuI/Spiro-OMeTAD double-layer HTLs-based devices were prepared in N2 gloveboxes and obtained an optimized PCE (photoelectric conversion efficiency) of 17.44%. Furthermore, their stability was improved due to the barrier effect of the inorganic CuI layer on the entry of air and moisture into the perovskite layer. The results demonstrate that another deposited CuI film is a promising method for realizing high-performance and air-stable PSCs.


JOM ◽  
2012 ◽  
Vol 64 (8) ◽  
pp. 957-967 ◽  
Author(s):  
Yulia V. Meteleva-Fischer ◽  
Yongxiang Yang ◽  
Rob Boom ◽  
Bert Kraaijveld ◽  
Henk Kuntzel

2018 ◽  
Vol 5 (2) ◽  
pp. 171054 ◽  
Author(s):  
J. Llanos ◽  
I. Brito ◽  
D. Espinoza ◽  
Ramkumar Sekar ◽  
P. Manidurai

Y 1.86 Eu 0.14 WO 6 phosphors were prepared using a solid-state reaction method. Their optical properties were analysed, and they was mixed with TiO 2 , sintered, and used as a photoelectrode (PE) in dye-sensitized solar cells (DSSCs). The as-prepared photoelectrode was characterized by photoluminescence spectroscopy, diffuse reflectance, electrochemical impedance spectroscopy (EIS) and X-ray diffraction. The photoelectric conversion efficiency of the DSSC with TiO 2 :Y 1.86 Eu 0.14 WO 6 (100:2.5) was 25.8% higher than that of a DSCC using pure TiO 2 as PE. This high efficiency is due to the ability of the luminescent material to convert ultraviolet radiation from the sun to visible radiation, thus improving the solar light harvesting of the DSSC.


Sign in / Sign up

Export Citation Format

Share Document