Qualification of YBCO Rings and 100% YBCO Wire Loops with the Transformation of the DC Magnetic Field

2010 ◽  
Vol 670 ◽  
pp. 11-20 ◽  
Author(s):  
Janos Kósa

In this work we present a solution for testing the quality of YBCO rings made from bulk and 100% YBCO wire loops. We used the transformation of the DC magnetic field [1]. Nowadays there are more and more solutions for checking the quality [2]. In this article we show a new method for testing applying the transformation of the DC magnetic field between two independent iron cores inductively.

2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Francisco Mederos-Henry ◽  
Sophie Hermans ◽  
Isabelle Huynen

This paper presents a novel approach for the characterization of microwave properties of carbon-based nanopowders, decorated or not with magnetic nanoparticles. Their microwave parameters, dielectric constant, electrical conductivity, and complex magnetic permeability are extracted from measurements performed using a single transmission line acting as a test cell. Two geometries of transmission line were tested, and successful results were obtained with each one of them. The measurement results are assessed by a phenomenological model enabling to fit the measurement of the dielectric constant and conductivity, providing an insight on the compacity quality of the powder sample. Also, the extraction of the permeability is validated by the detection of a ferromagnetic resonance showing a linear dependence on external DC magnetic field.


Electronics ◽  
2021 ◽  
Vol 10 (17) ◽  
pp. 2118
Author(s):  
Pengcheng Yin ◽  
Jin Xu ◽  
Lingna Yue ◽  
Ruichao Yang ◽  
Hairong Yin ◽  
...  

In this paper, a novel method, named PM-E, to focus the sheet electron beam (SEB) is proposed. This new method consists of a periodic magnetic field and an electrostatic field, which are used to control the thickness and width of the SEB, respectively. The PM-E system utilizes this electrostatic field to replace the unreliable By,off, which is a tiny transverse magnetic field in the PCM that confines the SEB’s width. Moreover, the horizontal focusing force of the PM-E system is more uniform than that of the conventional PCM, and the transition distance of the former is shorter than that of the latter. In addition, the simulation results demonstrate the ability of the PM-E system to resist the influence of the assembly error. Furthermore, in the PM-E system, the electric field can be conveniently changed to correct the deflection of the SEB’s trajectory and to improve the quality of the SEB.


2020 ◽  
Vol 2020 (4) ◽  
pp. 25-32
Author(s):  
Viktor Zheltov ◽  
Viktor Chembaev

The article has considered the calculation of the unified glare rating (UGR) based on the luminance spatial-angular distribution (LSAD). The method of local estimations of the Monte Carlo method is proposed as a method for modeling LSAD. On the basis of LSAD, it becomes possible to evaluate the quality of lighting by many criteria, including the generally accepted UGR. UGR allows preliminary assessment of the level of comfort for performing a visual task in a lighting system. A new method of "pixel-by-pixel" calculation of UGR based on LSAD is proposed.


2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Sabrina Sanchez ◽  
Johannes Wicht ◽  
Julien Bärenzung

Abstract The IGRF offers an important incentive for testing algorithms predicting the Earth’s magnetic field changes, known as secular variation (SV), in a 5-year range. Here, we present a SV candidate model for the 13th IGRF that stems from a sequential ensemble data assimilation approach (EnKF). The ensemble consists of a number of parallel-running 3D-dynamo simulations. The assimilated data are geomagnetic field snapshots covering the years 1840 to 2000 from the COV-OBS.x1 model and for 2001 to 2020 from the Kalmag model. A spectral covariance localization method, considering the couplings between spherical harmonics of the same equatorial symmetry and same azimuthal wave number, allows decreasing the ensemble size to about a 100 while maintaining the stability of the assimilation. The quality of 5-year predictions is tested for the past two decades. These tests show that the assimilation scheme is able to reconstruct the overall SV evolution. They also suggest that a better 5-year forecast is obtained keeping the SV constant compared to the dynamically evolving SV. However, the quality of the dynamical forecast steadily improves over the full assimilation window (180 years). We therefore propose the instantaneous SV estimate for 2020 from our assimilation as a candidate model for the IGRF-13. The ensemble approach provides uncertainty estimates, which closely match the residual differences with respect to the IGRF-13. Longer term predictions for the evolution of the main magnetic field features over a 50-year range are also presented. We observe the further decrease of the axial dipole at a mean rate of 8 nT/year as well as a deepening and broadening of the South Atlantic Anomaly. The magnetic dip poles are seen to approach an eccentric dipole configuration.


2011 ◽  
Vol 287-290 ◽  
pp. 2916-2920
Author(s):  
Chun Yan Ban ◽  
Peng Qian ◽  
Xu Zhang ◽  
Qi Xian Ba ◽  
Jian Zhong Cui

The resistance of Al-21%Cu alloy under no magnetic field, DC magnetic field and AC magnetic field from liquid to solid was measured by a four-probe method. The difference of resistance versus temperature curves (R-T curves) was analyzed. It is found that the R-T curves of Al-21%Cu alloy are monotone decreasing and have two obvious turning points. Under DC magnetic field, the liquidus and solidus temperatures of the alloy both decrease, while under AC magnetic field, the liquidus and solidus temperatures both increase. There is a good agreement between the microstructure of quenching sample and R-T curves. The mechanism of the effect of magnetic fields was discussed.


ChemPhysChem ◽  
2012 ◽  
Vol 13 (5) ◽  
pp. 1325-1331 ◽  
Author(s):  
Guo-hua Yao ◽  
Ming He ◽  
Dong-ming Chen ◽  
Tian-jing He ◽  
Fan-chen Liu

Sign in / Sign up

Export Citation Format

Share Document