Research on Structural Design and Optimization of Artificial Optical Compound Eye

2011 ◽  
Vol 697-698 ◽  
pp. 817-821
Author(s):  
M.J. Chen ◽  
Xin Chu ◽  
Chun Ya Wu ◽  
Y. Jiang

A novel curved artificial optical compound eye structure is proposed, which needs to be manufactured by ultra-precision machining due to the application of aspheric in the design. In this artificial compound eye, each of the micro-lens has an aspheric surface instead of spherical surface, which leads to a reduction of spherical aberration from 400μm to 75μm. The focal length of micro-lens is decided by its own position and equals to the distance between base surface and image receiver. The sructural parameters of micro-lens were calculated according to the theory of geometrical optics. The model of artificial compound eye was built and verified by ray tracing. Finally, the result shows that the novel curved artificial compound eye can improve imaging resolution and imaging quality at the edge effectively, and the proposed structure is feasible.

2011 ◽  
Vol 215 ◽  
pp. 361-365
Author(s):  
Wei Ren ◽  
Zhi Hui Xia ◽  
C.Q. Han

As the consumer market in the optics, electronics and aerospace industries grows, the profile accuracy demand for ultra-precision flat, spherical and aspheric optical surface micro-lens increases. Previous studies have found that machine system accuracy, tool alignment error and tool radius measurement error impact greatly on the profile accuracy of the machined surface. In this paper, we developed a grinding system based on the ultra-precision diamond lathe, presented a unified mathematical model of effects of all the geometric errors to the shape error by using the multi-body system theory. Aiming at the main source of profile error, the practical mathematical model is derived, and their propagation coefficients to profile error are calculated. By means of simulation analysis and grinding experiments of spherical part of tugnsten carbide, we conclude that the radial tool alignment error is the main influencing factor for the profile error of spherical surface; while tool radius measurement error influence the radius of sphere only.


Author(s):  
J. S. Wall ◽  
J. P. Langmore ◽  
H. Isaacson ◽  
A. V. Crewe

The scanning transmission electron microscope (STEM) constructed by the authors employs a field emission gun and a 1.15 mm focal length magnetic lens to produce a probe on the specimen. The aperture size is chosen to allow one wavelength of spherical aberration at the edge of the objective aperture. Under these conditions the profile of the focused spot is expected to be similar to an Airy intensity distribution with the first zero at the same point but with a peak intensity 80 per cent of that which would be obtained If the lens had no aberration. This condition is attained when the half angle that the incident beam subtends at the specimen, 𝛂 = (4𝛌/Cs)¼


Author(s):  
Richard L. McConville

A second generation twin lens has been developed. This symmetrical lens with a wider bore, yet superior values of chromatic and spherical aberration for a given focal length, retains both eucentric ± 60° tilt movement and 20°x ray detector take-off angle at 90° to the tilt axis. Adjust able tilt axis height, as well as specimen height, now ensures almost invariant objective lens strengths for both TEM (parallel beam conditions) and STEM or nano probe (focused small probe) modes.These modes are selected through use of an auxiliary lens situ ated above the objective. When this lens is on the specimen is illuminated with a parallel beam of electrons, and when it is off the specimen is illuminated with a focused probe of dimensions governed by the excitation of the condenser 1 lens. Thus TEM/STEM operation is controlled by a lens which is independent of the objective lens field strength.


Author(s):  
David A. Ansley

The coherence of the electron flux of a transmission electron microscope (TEM) limits the direct application of deconvolution techniques which have been used successfully on unmanned spacecraft programs. The theory assumes noncoherent illumination. Deconvolution of a TEM micrograph will, therefore, in general produce spurious detail rather than improved resolution.A primary goal of our research is to study the performance of several types of linear spatial filters as a function of specimen contrast, phase, and coherence. We have, therefore, developed a one-dimensional analysis and plotting program to simulate a wide 'range of operating conditions of the TEM, including adjustment of the:(1) Specimen amplitude, phase, and separation(2) Illumination wavelength, half-angle, and tilt(3) Objective lens focal length and aperture width(4) Spherical aberration, defocus, and chromatic aberration focus shift(5) Detector gamma, additive, and multiplicative noise constants(6) Type of spatial filter: linear cosine, linear sine, or deterministic


Author(s):  
A. V. Crewe ◽  
J. Wall ◽  
L. M. Welter

A scanning microscope using a field emission source has been described elsewhere. This microscope has now been improved by replacing the single magnetic lens with a high quality lens of the type described by Ruska. This lens has a focal length of 1 mm and a spherical aberration coefficient of 0.5 mm. The final spot size, and therefore the microscope resolution, is limited by the aberration of this lens to about 6 Å.The lens has been constructed very carefully, maintaining a tolerance of + 1 μ on all critical surfaces. The gun is prealigned on the lens to form a compact unit. The only mechanical adjustments are those which control the specimen and the tip positions. The microscope can be used in two modes. With the lens off and the gun focused on the specimen, the resolution is 250 Å over an undistorted field of view of 2 mm. With the lens on,the resolution is 20 Å or better over a field of view of 40 microns. The magnification can be accurately varied by attenuating the raster current.


The purpose of this memoir is to discover an optical appliance which shall correct in a practical manner the faults in the field of a Cassegrain reflector, while leaving unimpaired its achromatism and the characteristic features of its design, which gives a focal length much greater than the length of the instrument, combined with a convenient position of the observer. The question touches an investigation by Schwarzschild as to what can be done with two curved mirrors the figures of which are not necessarily spherical. With these be corrects spherical aberration and coma, but in order to secure a flat field he is led to a construction in which the second mirror, which is between the great mirror and its principal focus, is concave, and therefore shortens the effective focal length, in place of increasing it. The deformations from spherical figures are also so great, especially for the great mirror, as to leave it doubtful whether the construction discussed could ever be the model for practicable instruments. If we keep to the Cassegrain form, spherical aberration and coma may equally be corrected by deformations of the mirrors which through large, are less extreme, but there remains a pronounced curvature of the field. For this reason I am led, in the present memoir, to consider more complicated systems produced by the interposition of systems of lenses, achromatism can be preserved completely for a single focus if there are three lenses of focal length determined when their position are given, and if all are made of the same glass. One of these lenses, which I call the reverser, is silvered at the back and replaces the convex mirror; the other two are placed close together in the way of the outcoming beam, about one third of the distance from the great mirror to the reverser; the members of this pair, which I call the corrector, are of nearly equal but opposite focal lengths, introducing very little deviation in the ray but an arbitrary amount of aberration, according to the distribution of curvatures between the two faces of each lens. All the surfaces are supposed spherical except that of the great mirror, The essential problem is to bring the necessary work into a form that will allow unknown quantities which express the distribution of curvature between the faces of each lens to be carried forward algebraically. The methods employed are those of a recent memoir by the author,* and a part of the paper is occupied in working out expressions to which this theory leads, for thin lenses, systems of thin lenses, mirrors, reversers and the like, and it may be regarded as an expansion and working illustration of that memoir. Ibis part does not lend itself to summary, When the expressions are obtained the solution proceeds in a straightforward manner, by approximation, which is somewhat complicated owing to the number of considerations which it is necessary to keep in view, but is not otherwise difficult. The solution is completed at the stage where the unextinguished aberrations are considered negligible.


To those mathematicians who have investigated the theory of the refracting telescope, it has often, says Mr. Herschel, been objected, that little practical benefit has resulted from their speculations. Although the simplest considerations suffice for correcting that part of the aberration which arises from the different refrangibility of the different coloured rays, yet in the more difficult part of the theory of optical instruments which relates to the correction of the spherical aberration, the necessity of algebraic investigation has always been , acknowledged; although, however, the subject is confessedly within its reach, a variety of causes have interfered with its successful prosecution, and the best artists are content to work their glasses by empirical rules. In the investigations detailed in this paper, the author’s object is, first to present, under a general and uniform analysis, the whole theory of the aberration of spherical surfaces; and then to furnish practical results of easy computation to the artist, and applicable, by the simplest interpolations, to the ordinary materials on which he works. In pursuing these ends he has found it necessary somewhat to alter the usual language employed by optical writers;—thus, instead of speaking of the focal length of lenses, or the radii of their surfaces , he speaks of their powers and curvatures ; designating, by the former expression, the quotient of unity by the number of parts of any scale which the focal length is equal to; and by the latter, the quotient similarly derived from the radius in question. After adverting to some other parts of the subject of this paper, more especially to the problem of the destruction of the spherical aberration in a double or multiple lens, and to the difficulties which it involves, Mr. Herschel observes, that one condition, hitherto unaccountably overlooked, is forced upon our attention by the nature of the formulæ of aberration given in this paper; namely, its destruction not only from parallel rays, but also from rays diverging from a point at any finite distance, and which is required in a perfect telescope for land objects, and is of considerable advantage in those for astronomical use: 1st, The very moderate curvatures required for the surfaces; 2nd, That in this construction the curvatures of the two exterior surfaces of the compound lens of given focal length vary within very narrow limits, by any variation in either the refractive or dispersive powers at all likely to occur in practice; 3rd, That the two interior surfaces always approach so nearly to coincidence, that no considerable practical error can arise from neglecting their difference, and figuring them on tools of equal radii.


2021 ◽  
pp. 1-29
Author(s):  
Kuldeep Awasthi ◽  
Desireddy Shashidhar Reddy ◽  
Mohd. Kaleem Khan

Abstract This paper describes the design methodology for a novel Fresnel lens. The original Fresnel lens is obtained from a plano-convex lens, whose spherical surface is split into a number of divisions (called facets), collapsed onto the flat base. Thus, all the facets of the original Fresnel lens have the same radius as that of the plano-convex lens. The proposed design aims to achieve better ray concentration and reduced spherical aberration than the original Fresnel lens by constructing spherical facets with unequal radii. The centers and radii of facets are constrained so that the ray refracted from the bottom vertex of each facet on one side of the optical axis and the ray refracted from the outer vertex of the corresponding facet on the other side of the optical axis must intersect at the focal plane. The proposed lens design has resulted in a 275% gain in the concentration ratio and a 72.5% reduction in the spherical aberration compared to the original lens of the same aperture diameter and number of facets. The performance of both novel and original Fresnel lenses when used as solar concentrators with a conical coil receiver is evaluated. The novel Fresnel lens led to increased heat gain and resulted in a compact solar collector design.


2020 ◽  
Vol 28 (5) ◽  
pp. 6806 ◽  
Author(s):  
Licun Sun ◽  
Shuwu Sheng ◽  
Weidong Meng ◽  
Yuanfangzhou Wang ◽  
Quanhong Ou ◽  
...  

2021 ◽  
Author(s):  
Tianji Xing ◽  
Xuesen Zhao ◽  
Zhipeng Cui ◽  
Rongkai Tan ◽  
Tao Sun

Abstract The improvement of ultra-precision machining technology has significantly boosted the demand for the surface quality and surface accuracy of the workpieces to be machined. However, the geometric shapes of workpiece surfaces cannot be adequately manufactured with simple plane, cylindrical, or spherical surfaces because of their different applications in various fields. In this research, a method was proposed to generate tool paths for the machining of complex spherical surfaces based on an ultra-precise five-axis turning and milling machine with a C-Y-Z-X-B structure. Through the proposed tool path generation method, ultra-precise complex spherical surface machining was achieved. First, the complex spherical surface model was modeled and calculated, and then it was combined with the designed model to generate the tool path. Then the tool paths were generated with a numerically controlled (NC) program. Based on an ultra-precision three-coordinate measuring instrument and a white light interferometer, the machining accuracy of a workpiece surface was characterized, and t[1]he effectiveness of the provided tool path generation method was verified. The surface roughness of the machined workpiece was less than 90 nm. Furthermore, the surface roughness within the spherical region appeared to be less than 30 nm. The presented tool path generation method in this research produced ultra-precision spherical complex surfaces. The method could be applied to complex spherical surfaces with other characteristics.


Sign in / Sign up

Export Citation Format

Share Document