Effects of Grain Size and Texture on the Biocompatibility of Commercially Pure Titanium

2011 ◽  
Vol 702-703 ◽  
pp. 822-825 ◽  
Author(s):  
Majid Hoseini ◽  
Philippe Bocher ◽  
Fereshteh Azari ◽  
Hojatollah Vali ◽  
Jerzy A. Szpunar

Ultra fine grained (UFG) pure titanium fabricated by severe plastic deformation techniques has been recently considered for biomedical applications. In this study, the effects of grain size and crystallographic orientation on the biocompatibility of commercially pure titanium have been evaluated. Samples having significant differences in terms of average grain size (from 0.4 to 20 mm) and crystallographic textures have been produced using equal channel angular pressing (ECAP) and compared. X-ray diffraction and electron back scattered diffraction (EBSD) were used to document the texture and microstructural properties. Cell attachment tests were done to study the biocompatibility of the samples using MC3T3 pre-osteoblast cells. The number of attached cells was found to be higher on the samples having more (0002) plane parallel to the surface regardless of their grain sizes. It was concluded that the texture plays a more significant role than the grain size in the biocompatibility of pure titanium.


2006 ◽  
Vol 503-504 ◽  
pp. 717-720
Author(s):  
Akira Watazu ◽  
Ichinori Shigematsu ◽  
Aibin Ma ◽  
Yoshinori Nishida ◽  
Yong Jai Kwon ◽  
...  

The commercially pure titanium cylindrical samples with a diameter of 11.5mm and a length of 24mm were processed by a new severe plastic deformation process, called the rotary-die equal channel angular pressing (RD-ECAP), under the condition of 773K, 2.4mm/s punch. By the RD-ECAP, ECAP processes of 1-4 passes were possible without sample removal and the temperature of cp-titanium could be simply controlled. After the RD-ECAP process, the cp-titanium samples had no crack. Fine-grained microstructures were observed in the sample on Y plane. Therefore the samples processed by RD-ECAP were expected to have high mechanical strength.





2011 ◽  
Vol 674 ◽  
pp. 47-51 ◽  
Author(s):  
Krzysztof Topolski ◽  
Halina Garbacz ◽  
Wacław Pachla ◽  
Krzysztof J. Kurzydlowski

The aim of this study was to investigate the homogeneity of the bulk nanocrystalline titanium rods obtained by Hydrostatic Extrusion (HE). The investigated material was commercially pure titanium grade 2. The final products of extrusion were nanocrystalline rods with diameters of 7 and 10 mm and lengths of about 250 mm. The size and shape of the grains were examined on transverse sections using transmission electron microscopy (TEM). The grain size was determined by the average grain equivalent diameter d2. The grain size diversity was quantified in terms of the equivalent diameter coefficient of variation CV (d2). The samples for the microscopic analyses were cut from various regions of the rods i.e. top, end, centre, and from surface of the rods. In all the samples, the average grain size determined on transverse sections was about 70 nm and the nano-grains in the various regions of the rods were similar in the shape. The examinations demonstrated that the nanostructure of the extruded rods was homogeneous. This observation was confirmed by the results of microhardness measurements.



Author(s):  
F Reshadi ◽  
S Khorasani ◽  
G Faraji

This study investigated the surface characteristics of ultrafine-grain commercially pure titanium (UFG CP-Ti) substrates produced by equal channel angular pressing (ECAP), compared with those of coarse-grain commercially pure titanium (CG CP-Ti) and Ti–6Al–4V (Ti-64) substrates. All Ti surfaces were sandblasted and acid-etched (SLA-treated) to produce micro-rough surfaces. Tensile and microhardness tests were carried out to measure the mechanical properties of fabricated samples. Then the surface characteristics of samples including contact angle measurements, surface morphology and in vitro cell response were evaluated after polishing, sandblasting and acid etching procedures. The results showed that after applying four passes of ECAP, the average grain size of microstructure decreased from 25 µm to 170 nm, while the ultimate tensile strength increased from 545 ± 24 MPa to 971 ± 38 MPa. Investigation of surface morphologies carried out by scanning electron microscopy indicated that ECAP-processed substrate exhibits nano-topography compared with CG CP-Ti and Ti-64 substrates after applying SLA process. In addition, the contact angle of SLA-treated CG CP-Ti and UFG CP-Ti substrates decreased from 68.3° to 9.5° and 51.9° to 7.4°, respectively, indicating a significant improvement of surface wettability. The morphologies of MG63 cells cultured on the developed surfaces proved the potential superior osteoblast cell compatibility of the micro-roughened surface made of UFG CP-Ti substrates over CG CP-Ti and Ti-64 substrates.



2007 ◽  
Vol 1056 ◽  
Author(s):  
Jafar F. Al-Sharab ◽  
Rajendra Sadangi ◽  
Vijay Shukla ◽  
Bernard Kear

ABSTRACTPolycrystalline Y2O3 is the material of choice for IR windows since it has excellent optical properties in the visible, and near infra-red band. However, current processing methods yield polycrystalline Y2O3 with large grain size (> 100 μm), which limits the hardness and erosion resistance attainable. One way to improve strength is to develop an ultra-fine grained material with acceptable optical transmission properties. To realize a fine-grained ceramic, one approach is to develop a composite structure, in which one phase inhibits the growth of the other phase during processing. In this study, Y2O3-MgO nanocomposite with various MgO content (20, 50 and 80 mol%) were synthesized using plasma spray method. Extensive characterization techniques including x-ray diffraction, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Energy Dispersive spectrometry (EDS) were employed to study the synthesized powder as well as the consolidated sample. Transmission Electron Microscopy, as well as EDS chemical mapping, revealed that the consolidated sample have bi-continuous MgO-Y2O3 nanostructure with an average grain size of 200 nm.





2004 ◽  
Vol 449-452 ◽  
pp. 177-180 ◽  
Author(s):  
Cha Yong Lim ◽  
Jae Hyuck Jung ◽  
Seung Zeon Han

The equal channel angular pressing (ECAP) is one of the methods to refine the grain size of metallic materials. This study investigates the effect of ECAP process on the formation of the fine grain size in oxygen free Cu and Cu alloys. The average grain size has been refined from 150 µm before ECAP to 300 nm. Microstructure was analyzed by transmission electron micrography (TEM). The diffraction pattern of the selected area confirmed the formation of ultrafine-grained structure with high angle grain boundaries after 8 cycles of ECAP. Mechanical properties such as microhardness and tensile properties of the ultra-fine grained copper materials have been investigated.



Sign in / Sign up

Export Citation Format

Share Document