Residual Strain Distribution around a Fatigue-Crack Tip Determined by Neutron Diffraction

2012 ◽  
Vol 706-709 ◽  
pp. 1685-1689
Author(s):  
E Wen Huang ◽  
Kuan Wei Li ◽  
Soo Yeol Lee ◽  
Wan Chuck Woo ◽  
Yi Shiun Ding ◽  
...  

An analysis of residual stress, one of the contributory factors to the crack tip driving force, is extremely important to probe the fatigue crack growth mechanism and to further develop the life prediction methodology. Since fatigue crack growth is governed by crack-tip plasticity and crack closure in the wake of the crack tip, the investigation of residual stain/stress field in both behind and in front of the crack tip is crucial. In the current work, a 304L stainless steel compact-tension specimen is pre-cracked under constant-amplitude cyclic loading. Neutron diffraction is employed to directly measure the three orthogonal residual strain fields with 1-mm spatial resolution as a function of distance from the crack tip. The mapping results show that the three orthogonal residual-strain distributions around the crack tip depend on the stress multiaxiality, not following a single Poisson relationship to each axis.

Author(s):  
J. M. Treinen ◽  
Ph. P. Darcis ◽  
J. D. McColskey ◽  
R. Smith ◽  
J. Merritt

The effects of specimen geometry on the fatigue crack growth rates (FCGR) in API X65 and X100 pipeline steels were explored by use of the middle tension and compact tension specimen geometries. It was found that the specimen type has little influence on the stage II linear fatigue crack growth region for these steels. Furthermore, the FCGR behavior in the longitudinal and transverse directions was found to be nearly identical for both steels. Also of interest was a comparison of the FCGR results to the BS 7910 design curves, which showed a discrepancy between the results and the standard only at low delta K levels. A finite element analysis of the compliance relationships used to predict the crack lengths during testing of both specimen types revealed that the expression for both the middle tension specimen and the compact tension specimen were found to be valid. Although the curved geometry of the middle tension specimen caused slightly different compliance results, these differences did not appear to affect the FCGR results.


2021 ◽  
Vol 15 (4) ◽  
pp. 8565-8579
Author(s):  
Mohammad Noghabi ◽  
I. Sattari-far ◽  
H. Hosseini Toudeshky

Numerical and experimental study was conducted on fatigue crack growth (FCG) of metallic components to investigate the redistribution of mechanical residual stresses during FCG. To this end, the compact tension specimens of an aluminium alloy were used. In addition, mechanical residual stresses were introduced near the crack tip by applying compressive and tensile loads, followed by visually observing the side-surface of the specimens to estimate the crack growth length. In the numerical simulation, cyclic J-integral was used as the crack growth fracture parameter and a good agreement was observed between the numerical and experimental results. The results of the finite element method demonstrated a clear redistribution of mechanical residual stresses during FCG. After a few cycles, the residual stress field around the crack tip reached a lower magnitude value confined in a smaller zone, although this zone was stable during the remaining fatigue process. Finally, present study evaluated the effect of stress ratio, load amplitude, and initial residual stresses level on the redistribution of residual stresses. It was observed that the residual stresses are mainly released during the first steps of fatigue loading.


2014 ◽  
Vol 777 ◽  
pp. 25-30 ◽  
Author(s):  
Ali Mehmanparast ◽  
Catrin M. Davies ◽  
Kamran Nikbin

An important issue to be considered in the life assessment of power plant components is the effects of prior creep damage on subsequent fatigue crack growth and fracture behavior. To examine these effects, creep damage has been introduced into 316H stainless steel material by interrupting creep crack growth (CCG) tests on compact tension, C(T), specimens at 550 °C. During the CCG tests, the specimen is loaded in tension, crept and unloaded after a small amount of crack extension. This process introduces compressive residual stress fields at the crack tip, which may subsequently affect the fatigue crack growth test results. In this work, neutron diffraction (ND) measurements have been conducted on interrupted CCG test specimens, which contain creep damage local to the crack tip, and the results are compared to predictions obtained from finite element (FE) simulations. Reasonable agreement has been found between the FE predictions and ND measurements.


Author(s):  
Lanwen WANG ◽  
Xuanyu Sheng ◽  
Jianbin Luo

A new peridynamic fatigue damage-cumulative hybrid model is developed in this study, which is modeled by Kinetic Theory of Fracture(KTF) and Paris formula. The compact tension specimen and modified compact tension specimen are used to study the convergence of the fatigue crack growth path and fatigue life. Then constant amplitude cyclic loading and variable amplitude cyclic loading of the specimens are simulated. By comparing with the experimental results, the accuracy of the model is verified. Compared with the fatigue model that only uses KTF, the hybrid model predicts the fatigue crack growth rate more accurately. The model is based on the stress damage criterion in the fatigue crack initiation stage, which can be a basis for fatigue prediction and safety design of components in complex stress state in actual engineering.


2013 ◽  
Vol 820 ◽  
pp. 110-113
Author(s):  
Chun Guo Zhang ◽  
Peng Min Lu ◽  
Jun Hong Li

The present work dealt with the fatigue and residual stress (RS) effects of a soft buffer layer (BL) between the parent metal and the weld metal (WM) on welded high-strength low-alloy (HSLA) steel. Six strategies were pursued by varying BL thickness and changing U-notch position with respect to the WM in extended-compact tension specimen. The U-notch position was changed to study the effect of welding RS field, acting along the fatigue crack growth path. The welded HSLAs with BLs strategies were compared to the specimens without BLs strategies, before and after releasing RS respectively. The results demonstrated that the incorporation of a thin BL of 4 mm significantly reduced the fatigue crack growth rate (da/dN) when the RS in the welded HSLA was released by machining a U-notch in the WM. A thick BL of 10 mm was found to be beneficial to fatigue resistance when a U-notch was in the PM.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


Sign in / Sign up

Export Citation Format

Share Document