Quantification and Prediction of Residual Stresses in Creep Crack Growth Specimens

2014 ◽  
Vol 777 ◽  
pp. 25-30 ◽  
Author(s):  
Ali Mehmanparast ◽  
Catrin M. Davies ◽  
Kamran Nikbin

An important issue to be considered in the life assessment of power plant components is the effects of prior creep damage on subsequent fatigue crack growth and fracture behavior. To examine these effects, creep damage has been introduced into 316H stainless steel material by interrupting creep crack growth (CCG) tests on compact tension, C(T), specimens at 550 °C. During the CCG tests, the specimen is loaded in tension, crept and unloaded after a small amount of crack extension. This process introduces compressive residual stress fields at the crack tip, which may subsequently affect the fatigue crack growth test results. In this work, neutron diffraction (ND) measurements have been conducted on interrupted CCG test specimens, which contain creep damage local to the crack tip, and the results are compared to predictions obtained from finite element (FE) simulations. Reasonable agreement has been found between the FE predictions and ND measurements.

Author(s):  
Masaru Sekihara ◽  
Shigeo Sakurai

The effects of mechanical degradation on the creep- and fatigue-crack growth rates in power plants operated long-term were studied. Creep-crack growth tests and fatigue-crack growth tests were performed using creep-pre-strained and repetitive-strained CrMoV rotor-steel specimens. It was found that the creep-crack growth rates, da/dt, of the creep-pre-damaged specimens were larger than those of virgin specimens under constant load. It was also found that under the same stress intensity factor K, da/dt in the case of about 10%-crept and creep void induced specimens was increased five times, while in the case of 0.8%- and 2.8%-crept specimens, it only increased a little. However, all the data fell in a narrow scatter band in the relationship between C* and da/dt. The effect of long-term operating degradation appeared on the creep- and fatigue-damage under the Slow-Fast waveform. Also the crack density was larger in the damaged specimens compared with the virgin specimens. Other results showed that the fatigue-crack growth rates, da/dN, of creep- and fatigue-pre-damaged specimens were larger than those of virgin specimens. Under the same stress intensity factor range ΔK, da/dN in a specimen with approximately 10%-creep was increased 20 times. Moreover da/dN in fatigue-pre-damaged specimens was accelerated 10 times. However, the results of the strain-controlled crack growth test fell in a narrow scatter band in the relationship between J integral range ΔJ and da/dN. These results suggest that the creep remaining lives and fatigue remaining lives of mechanically damaged CrMoV steel can be estimated using the C* & ΔJ values considering the creep rate and the deformation rate of the pre-damaged materials and the da/dt and da/dN values of the virgin material.


2021 ◽  
Vol 15 (4) ◽  
pp. 8565-8579
Author(s):  
Mohammad Noghabi ◽  
I. Sattari-far ◽  
H. Hosseini Toudeshky

Numerical and experimental study was conducted on fatigue crack growth (FCG) of metallic components to investigate the redistribution of mechanical residual stresses during FCG. To this end, the compact tension specimens of an aluminium alloy were used. In addition, mechanical residual stresses were introduced near the crack tip by applying compressive and tensile loads, followed by visually observing the side-surface of the specimens to estimate the crack growth length. In the numerical simulation, cyclic J-integral was used as the crack growth fracture parameter and a good agreement was observed between the numerical and experimental results. The results of the finite element method demonstrated a clear redistribution of mechanical residual stresses during FCG. After a few cycles, the residual stress field around the crack tip reached a lower magnitude value confined in a smaller zone, although this zone was stable during the remaining fatigue process. Finally, present study evaluated the effect of stress ratio, load amplitude, and initial residual stresses level on the redistribution of residual stresses. It was observed that the residual stresses are mainly released during the first steps of fatigue loading.


Author(s):  
Nak Hyun Kim ◽  
Yun Jae Kim ◽  
Woo Gon Kim ◽  
Hyeong Yeon Lee

This paper introduce theoretical creep crack growth prediction model and provides experimental validation of the approach for simulating creep crack growth using finite element analysis method, recently proposed by the authors. The FE creep damage model is based on the creep ductility exhaustion concept, and incremental damage is defined by the ratio of incremental creep strain and multi-axial creep ductility. A simple linear damage summation rule is applied. When accumulated damage becomes unity, element stresses are reduced to zero to simulate progressive crack growth. For validation, simulated results are compared with experimental data for a compact tension specimen of modified 9Cr-1Mo at 600°C under various loading levels. The simulated results agree well with experimental C*-da/dt data. The test data are also compared with theoretical CCG prediction model.


2012 ◽  
Vol 706-709 ◽  
pp. 1685-1689
Author(s):  
E Wen Huang ◽  
Kuan Wei Li ◽  
Soo Yeol Lee ◽  
Wan Chuck Woo ◽  
Yi Shiun Ding ◽  
...  

An analysis of residual stress, one of the contributory factors to the crack tip driving force, is extremely important to probe the fatigue crack growth mechanism and to further develop the life prediction methodology. Since fatigue crack growth is governed by crack-tip plasticity and crack closure in the wake of the crack tip, the investigation of residual stain/stress field in both behind and in front of the crack tip is crucial. In the current work, a 304L stainless steel compact-tension specimen is pre-cracked under constant-amplitude cyclic loading. Neutron diffraction is employed to directly measure the three orthogonal residual strain fields with 1-mm spatial resolution as a function of distance from the crack tip. The mapping results show that the three orthogonal residual-strain distributions around the crack tip depend on the stress multiaxiality, not following a single Poisson relationship to each axis.


1986 ◽  
Vol 108 (2) ◽  
pp. 186-191 ◽  
Author(s):  
K. M. Nikbin ◽  
D. J. Smith ◽  
G. A. Webster

This paper is concerned with assessing the integrity of cracked engineering components which operate at elevated temperatures. Fracture mechanics parameters are discussed for describing creep crack growth. A model is presented for expressing growth rate in terms of creep damage accumulation in a process zone ahead of the crack tip. Correlations are made with a broad range of materials exhibiting a wide spread of creep ductilities. It is found that individual propagation rates can be predicted with reasonable accuracy from a knowledge only of the material uni-axial creep ductility. An engineering creep crack growth assessment diagram is proposed which is independent of material properties but which is sensitive to the state of stress at the crack tip. Approximate bounds are presented for plane stress and plane strain situations and it is shown that crack growth rates about fifty times faster are expected under plane strain conditions than when plane stress prevails.


Author(s):  
Robert A. Ainsworth

Creep-fatigue assessments require inputs for both creep damage and fatigue damage. Then these damage terms are combined using some form of interaction diagram to enable estimation of the creep-fatigue life. Similarly, creep-fatigue crack growth assessments need separate calculations of creep crack growth, fatigue crack growth and again possibly some allowance for interaction in order to obtain the total crack growth. A consequence of these approaches is that uncertainties in creep calculations, uncertainties in fatigue calculations and uncertainties in the form of interaction all lead to significant uncertainties in the overall lifetime or crack growth assessment. This paper first briefly describes how creep-fatigue and creep-fatigue crack growth assessments are performed using the UK R5 procedure and contrasts the methods with those in other codes. Then, the paper presents the guidance in R5 on addressing the many uncertainties in these assessments and discusses the use of probabilistic methods in order to avoid over-conservative lifetime and crack growth estimates.


Author(s):  
Nak Hyun Kim ◽  
Yun Jae Kim ◽  
Catrin M. Davies ◽  
Ali Mehmanparast ◽  
Kamran M. Nikbin

Discontinuous cracks ahead of the leading crack tip may be present in observedcertain creep crack growth tests as well as in components. In this work, a single crack of different dimensions and distance from the leading crack has been numerically modeled in a compact tension specimen using elastic, elastic-plastic and elastic-plastic-creep loading. In order to examine their effects on fracture mechanics parameters a sensitivity analysis was performed to determine the effects of size and distance of the secondary crack with respect to the main crack. t The elastic analysis shows that the compliance is insensitive small cracks ahead of the main crack. Limit load analyses, assuming an elastic-perfectly plastic material, show that the limit load decreases due to the presence of discontinuous cracks ahead of the main crack. Theload versus plastic load-line displacement response of the specimen was significantly influenced by discontinuous cracking. The J contour parameter and C*-integral have been evaluated at the three crack tips and the average of all of them derived for the appropriate contours were compared with the valuesobtained from on ASTM E1820(1) and E1457(2). Whilst the average values of the contour integral are similar to the ASTM J and C* values there is significant differences in J and C* for the individual crack tip values. This need to be further evaluated in future work.


Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1183
Author(s):  
Edmundo R. Sérgio ◽  
Fernando V. Antunes ◽  
Diogo M. Neto ◽  
Micael F. Borges

The fatigue crack growth (FCG) process is usually accessed through the stress intensity factor range, ΔK, which has some limitations. The cumulative plastic strain at the crack tip has provided results in good agreement with the experimental observations. Also, it allows understanding the crack tip phenomena leading to FCG. Plastic deformation inevitably leads to micro-porosity occurrence and damage accumulation, which can be evaluated with a damage model, such as Gurson–Tvergaard–Needleman (GTN). This study aims to access the influence of the GTN parameters, related to growth and nucleation of micro-voids, on the predicted crack growth rate. The results show the connection between the porosity values and the crack closure level. Although the effect of the porosity on the plastic strain, the predicted effect of the initial porosity on the predicted crack growth rate is small. The sensitivity analysis identified the nucleation amplitude and Tvergaard’s loss of strength parameter as the main factors, whose variation leads to larger changes in the crack growth rate.


2014 ◽  
Vol 891-892 ◽  
pp. 1675-1680
Author(s):  
Seok Jae Chu ◽  
Cong Hao Liu

Finite element simulation of stable fatigue crack growth using critical crack tip opening displacement (CTOD) was done. In the preliminary finite element simulation without crack growth, the critical CTOD was determined by monitoring the ratio between the displacement increments at the nodes above the crack tip and behind the crack tip in the neighborhood of the crack tip. The critical CTOD was determined as the vertical displacement at the node on the crack surface just behind the crack tip at the maximum ratio. In the main finite element simulation with crack growth, the crack growth rate with respect to the effective stress intensity factor range considering crack closure yielded more consistent result. The exponents m in the Paris law were determined.


Sign in / Sign up

Export Citation Format

Share Document