Recycled Carbon Fibres: Contact Angles and Interfacial Bonding with Thermoset Resins

2012 ◽  
Vol 714 ◽  
pp. 255-261 ◽  
Author(s):  
Guo Zhan Jiang ◽  
Stephen J. Pickering

Recycled T800S carbon fibre from a polymer composite using a pyrolysis process was compared with virgin T800S fibre and the contact angle and interfacial shear strength with epoxy and vinyl ester resins were measured. The contact angles were measured using drop length-height method, and the interfacial shear strengths were measured using micro-bond method. For the same type of resin, the recycled T800S carbon fibre had a greater contact angle and lower interfacial shear strength than those of the virgin fibre.

2015 ◽  
Vol 3 (7) ◽  
pp. 3360-3371 ◽  
Author(s):  
L. Servinis ◽  
L. C. Henderson ◽  
L. M. Andrighetto ◽  
M. G. Huson ◽  
T. R. Gengenbach ◽  
...  

An in situ diazonium grafting methodology was used to decorate the surface of carbon fibres with pendant amines. This methodology was shown to greatly affect IFSS in single fibre composites.


e-Polymers ◽  
2005 ◽  
Vol 5 (1) ◽  
Author(s):  
Maria C. Paiva ◽  
João F. Mano

AbstractUnidirectional composite material samples with ultrahigh modulus carbon fibres, treated and untreated by oxygen plasma, and a polycarbonate matrix were prepared and tested. Dynamic mechanical analysis (DMA) was used to study interfacial fibre/matrix interaction and the fragmentation test method was applied to determine interfacial shear strength. For the composite samples with treated carbon fibres, analyzed by DMA, a consistent shift of the loss modulus peak toward higher temperature was observed. The damping ratio was highly affected by residual stresses along the carbon fibre direction due to the large difference of thermal expansion coefficients of matrix and fibres. Critical fibre length and interfacial shear strength, obtained from the fragmentation test, showed substantial improvement for treated fibres as compared to the untreated ones. Plasma oxidation of the fibre surface improved considerably the fibre-matrix interaction. Care must be taken interpreting the DMA results, due to specific characteristics of the system studied.


1994 ◽  
Vol 3 (4) ◽  
pp. 096369359400300 ◽  
Author(s):  
Jonathan R. Wood ◽  
H. Daniel Wagner ◽  
Gad Marom

A model has been proposed that represents the compressive fragmentation phenomenon and can evaluate the interfacial shear strength without recourse to complicated stress transfer models. The temperature dependence of the interfacial shear strength is investigated for carbon fibre-polycarbonate microcomposites and the values obtained are applicable to a system that has weak interfacial bonding.


Carbon ◽  
2019 ◽  
Vol 148 ◽  
pp. 361-369 ◽  
Author(s):  
Seyed Mousa Fakhrhoseini ◽  
Quanxiang Li ◽  
Vishnu Unnikrishnan ◽  
Minoo Naebe

2019 ◽  
Vol 827 ◽  
pp. 178-183
Author(s):  
Kazuto Tanaka ◽  
Kanako Yamada ◽  
Yoshitake Hinoue ◽  
Tsutao Katayama

Carbon Fibre Reinforced Thermoplastics (CFRTP) are expected to be applied to the automotive industry instead of CFRP which require curing time, due to the expected short production cycle time of CFRTP, which is using thermoplastic as a matrix. We reported that the grafting of carbon nanotubes (CNTs) on the carbon fibre improves the fibre matrix interfacial shear strength. In our process to graft CNTs on carbon fibre, chemical vapour deposition (CVD) method was used and Ni, which was used as the catalyst, was electrically plated onto carbon fibres. Since commercially available carbon fibre was sized, which may affect the plating behaviour of Ni, the effects of sizing agents on CNT deposition have to be clarified. In this study, Ni for catalytic metal was plated by electrolytic plating using a watt bath on spread PAN-based carbon fibre and unsized carbon fibre, and the influence of the sizing agent to the distribution of Ni was evaluated. The morphological observation of carbon fibre and single fibre pull-out test were conducted to clarify the influence of sizing agent on the CNT deposition and the interfacial shear strength between the CNT grafted carbon fibre and Polyamide 6 (PA6). Uniform distribution of small sized Ni particles can be obtained on unsized carbon fibre and uniform Ni particles results in uniform CNT distribution. The CNT grafted unsized carbon fibre showed higher interfacial shear strength with PA6 than that of sized carbon fibre.


2012 ◽  
Vol 525-526 ◽  
pp. 49-52 ◽  
Author(s):  
Kenichi Takemura ◽  
Hideaki Katogi

In this study, interfacial shear strength of carbon fiber reinforced polypropylene were investigated. Two kinds of reinforcements are used. One is non-treated carbon fiber, another is acetone-treated carbon fiber. And two kinds of matrices are used. One is non-treated polypropylene, another is maleic anhydride-polypropylene. Three point flexural tests and micro debonding tests are conducted. As a result, following conclusions are obtained. Acetone treatment and maleic anhydride are effective to the adhesives on the surface between fiber and matrix. But simultaneous treatments are not effective. The shear strength is not dependent on fiber embedded length. The contact angle and fracture load are dependent on fiber embedded length. The interfacial strength is dependent on the contact angle. As the contact angle increases, the interfacial strength increases.


Sign in / Sign up

Export Citation Format

Share Document