thermoset resins
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 19)

H-INDEX

18
(FIVE YEARS 2)

2022 ◽  
pp. 317-341
Author(s):  
Sanjay Remanan ◽  
Tushar Kanti Das ◽  
Narayan Chandra Das
Keyword(s):  

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4412
Author(s):  
Emanuele Cesprini ◽  
Primož Šket ◽  
Valerio Causin ◽  
Michela Zanetti ◽  
Gianluca Tondi

One of the major challenges currently in the field of material science is finding natural alternatives to the high-performing plastics developed in the last century. Consumers trust synthetic products for their excellent properties, but they are becoming aware of their impact on the planet. One of the most attractive precursors for natural polymers is tannin extracts and in particular condensed tannins. Quebracho (Schinopsis balansae) extract is one of the few industrially available flavonoids and can be exploited as a building block for thermoset resins due to its phenol-like reactivity. The aim of this study was to systematically investigate different hardeners and evaluate the water resistance, thermal behavior, and chemical structure of the quebracho tannin-based polymers in order to understand their suitability as adhesives. It was observed that around 80% of the extract is resistant to leaching when 5% of formaldehyde or hexamine or 10% of glyoxal or furfural are added. Additionally, furfuryl alcohol guarantees high leaching resistance, but only at higher proportions (20%). The quebracho-based formulations showed specific thermal behavior during hardening and higher degradation resistance than the extract. Finally, these polymers undergo similar chemistry to those of mimosa, with exclusive reactivity of the A-ring of the flavonoid.


Solids ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 314-330
Author(s):  
Lykourgos C. Kontaxis ◽  
Athanasios Kotrotsos ◽  
Spyros Verbis ◽  
George C. Papanicolaou

The aim of the present study is to apply an embedded resistance wire technique for curing of thermosetting resins as well as for the self-healing of thermoplastic polymers. The work consists of two parts. In the first part, Kanthal resistance wires embedded in a resin plate acted as heating elements when direct electrical current was flowing through them (Joule heating). During heating, the temperature was continuously monitored using a thermal camera, and accurate temperature times for fixed position diagrams as well as temperature positions for fixed time diagrams were calculated. The effects of curing with this method were evaluated by studying the three-point bending mechanical behavior of the cured resin, comparing it with the corresponding behavior of the same resin when cured using a conventional oven curing method at the same temperature. In the second part of the present work, the possibility of using the same technique for healing existing notches and flaws in a PET thermoplastic is explored. We examined whether providing energy through the resistance wires created the right amount of heat to heal the thermoplastic, or, more specifically, whether it closed the notches and eliminated the abrasions that were artificially created on the specimens. The technique using embedded resistance wires worked equally well, with interesting and promising preliminary results regarding the curing of thermoset resins and the healing of thermoplastics.


2021 ◽  
pp. 095400832110130
Author(s):  
Hailong Li ◽  
Sipei Zhao ◽  
Li Pei ◽  
Zihe Qiao ◽  
Ding Han ◽  
...  

Polybenzoxazines are emerging as a class of high-performance thermoset polymers that can find their applications in various fields. However, its practical application is limited by its low toughness. The cyclic β-cyclodextrin and a newly synthesized derivative (β-cyclodextrin-MAH) were separately blended with benzoxazine to improve the toughness of polybenzoxazine. The results revealed that the maximum impact strength of the blend was 12.24 kJ·m−2 and 14.29 kJ·m−2 when 1 wt.% of β-Cyclodextrin and β-Cyclodextrin-MAH, respectively, were used. The strengths were 53% and 86% higher than that of pure polybenzoxazine. The curing reaction, possible chemical structures, and fractured surface were examined using differential scanning calorimetry, Fourier transform infrared spectroscopy, and scanning electron microscopy techniques to understand the mechanism of generation of toughness. The results revealed that the sea-island structure and the presence of hydrogen bonds between polybenzoxazine and β-cyclodextrin and β-cyclodextrin-MAH resulted in the generation of toughness. Furthermore, the curves generated during thermogravimetric analysis did not significantly change, revealing the good thermal properties of the system. The phase-separated structure and the hydrogen bonds present in the system can be exploited to prepare synergistically tough polybenzoxazine exhibiting excellent thermal properties. This can be a potential way of modifying the thermoset resins.


2021 ◽  
Vol 4 ◽  
pp. 100109
Author(s):  
Anna Sangregorio ◽  
Anitha Muralidhara ◽  
Nathanael Guigo ◽  
Guy Marlair ◽  
Ed de Jong ◽  
...  

2020 ◽  
Vol 58 (24) ◽  
pp. 3419-3431
Author(s):  
Boris Dyatkin ◽  
Naresh C. Osti ◽  
Robert W. Smith ◽  
Madhusudan Tyagi ◽  
Tristan Butler ◽  
...  

Polymers ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 2645
Author(s):  
Aratz Genua ◽  
Sarah Montes ◽  
Itxaso Azcune ◽  
Alaitz Rekondo ◽  
Samuel Malburet ◽  
...  

Epoxy resins are widely used in the composite industry due to their dimensional stability, chemical resistance, and thermo-mechanical properties. However, these thermoset resins have important drawbacks. (i) The vast majority of epoxy matrices are based on non-renewable fossil-derived materials, and (ii) the highly cross-linked molecular architecture hinders their reprocessing, repairing, and recycling. In this paper, those two aspects are addressed by combining novel biobased epoxy monomers derived from renewable resources and dynamic crosslinks. Vanillin (lignin) and phloroglucinol (sugar bioconversion) precursors have been used to develop bi- and tri-functional epoxy monomers, diglycidyl ether of vanillyl alcohol (DGEVA) and phloroglucinol triepoxy (PHTE) respectively. Additionally, reversible covalent bonds have been incorporated in the network by using an aromatic disulfide-based diamine hardener. Four epoxy matrices with different ratios of epoxy monomers (DGEVA/PHTE wt%: 100/0, 60/40, 40/60, and 0/100) were developed and fully characterized in terms of thermal and mechanical properties. We demonstrate that their performances are comparable to those of commonly used fossil fuel-based epoxy thermosets with additional advanced reprocessing functionalities.


Sign in / Sign up

Export Citation Format

Share Document