Characterization of Large Area 4H-SiC and 6H-SiC Capacitive Devices at 600 °C

2012 ◽  
Vol 717-720 ◽  
pp. 1187-1189
Author(s):  
Ruby N. Ghosh ◽  
Reza Loloee

SiC based capacitive devices have the potential to operate in high temperature, chemically corrosive environments provided that the electrical integrity of the gate oxide and metallization can be maintained in these environments. We report on the performance of large area, up to 8 x 10-3 cm2, field-effect capacitive sensors fabricated on both the 4H and 6H polytypes at 600°C. Large area capacitors improve the signal/noise (S/N) ratio which is proportional to the slope of the capacitance-voltage characteristic. At 600 °C we obtain a S/N ~ 20. The device response is independent of polytype, either 4H or 6H-SiC. These results demonstrate the reliability of our field-effect structure, operating as a simple potentiometer at high temperature.

2005 ◽  
Vol 97 (4) ◽  
pp. 046106 ◽  
Author(s):  
Stephen K. Powell ◽  
Neil Goldsman ◽  
Aivars Lelis ◽  
James M. McGarrity ◽  
Flynn B. McLean

2000 ◽  
Vol 40 (4-5) ◽  
pp. 571-575 ◽  
Author(s):  
R Clerc ◽  
T Devoivre ◽  
G Ghibaudo ◽  
C Caillat ◽  
G Guégan ◽  
...  

2006 ◽  
Vol 527-529 ◽  
pp. 1187-1190 ◽  
Author(s):  
Yu Zhu Li ◽  
Petre Alexandrov ◽  
Jian Hui Zhang ◽  
Larry X. Li ◽  
Jian Hui Zhao

SiC JFET, compared with SiC MOSFET, is attractive for high power, high temperature applications because it is free of gate oxide reliability issues. Trenched-and-Implanted VJFET (TIVJFET) does not require epi-regrowth and is capable of high current density. In this work we demonstrate two trenched-and-implanted normally-off 4H-SiC vertical junction field-effect transistors (TI-VJFET), based on 120μm, 4.9×1014cm-3 and 100μm, 6×1014cm-3 drift layers. The corresponding devices showed blocking voltage (VB) of 11.1kV and specific on-resistance (RSP_ON) of 124m7cm2, and VB of 10kV and RSP_ON of 87m7cm2. A record-high value for VB 2/RSP_ON of 1149MW/cm2 was achieved for normally-off SiC FETs.


2005 ◽  
Vol 483-485 ◽  
pp. 669-672 ◽  
Author(s):  
Ryouji Kosugi ◽  
Kenji Fukuda ◽  
Kazuo Arai

A high temperature rapid thermal processing (HT-RTP) above 1400oC was investigated for use in the gate oxide formation of 4H-SiC by a cold-wall oxidation furnace. The gate oxide film of ~50nm can be formed for several minutes in the oxidizing atmospheres such as N2O and O2, where the oxidation rates were 8-10nm/min. After the initial oxide formation, the HT-RTPs in various ambient gases were conducted, and the dependences of their MOS interface properties on the gases were evaluated by a capacitance-voltage (CV) measurement. Based on the results, the process sequence of gate oxidation was determined as follows; the initial oxide was formed by the HT-RTO (oxidation) in N2O or in O2 with subsequent post annealing in Ar ambient, and then the HT-RTN (nitridation) in NO was conducted. The total process time becomes 20-50min. The interface trap density (Dit) of fabricated MOS capacitor shows 3-5x1011cm-2eV-1 at Ec-E~0.2eV. The field-effect channel mobility of fabricated 4H-SiC lateral MOSFETs was ~30cm2/Vs.


Solar Cells ◽  
1988 ◽  
Vol 24 (3-4) ◽  
pp. 363-369
Author(s):  
Jeng-Jye Shiau ◽  
Alen L. Fahrenbruch ◽  
Richard H. Bube

2011 ◽  
Vol 20 (03) ◽  
pp. 697-706 ◽  
Author(s):  
NATHANIEL S. SAFRON ◽  
MICHAEL S. ARNOLD

We have recently reported on the synthesis and characterization of a new form of nanostructured graphene that we call "nanoperforated graphene". Nanoperforated graphene is fabricated by etching a periodic array of nanoscale holes into atomic membranes of graphene to create an ultrathin superlattice-like structure. Nanoperforated graphene demonstrates semiconductor-like behavior and we have realized room-temperature field-induced conductance modulation as high as 450 (compared with < 10 for unpatterned graphene) with field-effect mobilities of ~ 1 cm2V-1s-1. Here, we discuss the conduction mechanisms in nanoperforated graphene and the relevance of this new material for field-effect transistor devices. In nanoperforated graphene with 15 nm nanoconstrictions, we observe that the low-bias mobility is independent of temperature, consistent with elastic scattering-limited conduction. At low temperatures, a transport gap limits conduction in the sub-threshold regime and affects the threshold voltage for band conduction. We show that the high-bias electrical characteristics of nanoperforated graphene are similar to "artificial solids," a class of materials made of 2D arrays of Coulomb islands, consistent with observed Coulomb Blockade features in the sub-threshold regime. Currently, the device characteristics of the nanopatterned graphene material are found to be suitable for large-area, thin-film transistor applications. Future higher-performance applications are expected.


Sign in / Sign up

Export Citation Format

Share Document