The Dynamic Recrystallization of Hot-Deformed Austenite in a Micro-Alloyed Steel

2012 ◽  
Vol 724 ◽  
pp. 287-290
Author(s):  
Yuan She ◽  
Zhao Hui Zhang ◽  
Jun Yang ◽  
Jian Tao Ju

As the dynamic recrystallization (DRX) behavior of hot-deformed austenite is the basis of determining controlled rolling schedule for steel, in the present work, the dynamic recrystallization behavior of austenite of a 0.22%C-1.30%Mn-0.04%Nb micro-alloyed steel was investigated by means of high temperature compression tests on the Thermecmastor-Z simulator. By the analysis of true stress-strain curves at different deformation stages, the hot deformation equation of austenite was established for the steel. As a result, the energy to induce recrystallization of austenite for the steel is 419.1 kJmol-1, as it was influenced by the drag effect of micro-alloyed element Nb in solid solution. The ratio (σc/σp) of critical stress σc (where DRX occurs) to peak stress σp is 0.93 while the ratio (εc/εp) of critical strain εc to peak stress εp is 0.52 for the steel. The austenite grain size of dynamic recrystallization of the micro-alloyed steel is refined by decreasing the deformation temperature and improving the stain rate.

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1289
Author(s):  
Cesar Facusseh ◽  
Armando Salinas ◽  
Alfredo Flores ◽  
Gerardo Altamirano

Interrupted and continuous hot compression tests were performed for eutectoid steel over the temperature range of 850 to 1050 °C and while using strain rates of 0.001, 0.01, 0.1, and 1 s−1. The interrupted tests were carried out to characterize the kinetics of static recrystallization(SRX) and determinate the interpass time conditions that are required for initiation and propagation of dynamic recrystallization (DRX), while considering that the material does not contain microalloying elements additions for the recrystallization delay. Continuous testing was used to investigate the evolution of the austenite grain size that results from DRX. The results indicate that carbon content accelerates the SRX rate. This effect was observed when the retardation of recrystallization due to a decrease in deformation temperature from 1050 to 850 °C was only about one order of magnitude. The expected decelerate effect on the SRX rate when the initial grain size increases from 86 to 387 µm was not significant for this material. Although the strain parameter has a strong influence on SRX rate, in contrast to a lesser degree of strain rate, both of the effects are nearly independent of the chemical composition. The calculated maximum interpass times that are compatible with DRCR (Dynamic Recrystallization Controlled Rolling), for relatively low strain rates, suggest that the onset and maintaining of the DRX is possible. However, while using the empirical equations that were developed in the present work to estimate the maximum times for high strain rates, such as those observed in the wire and rod mills, indicate that the DRX start is feasible, but maintaining this mechanism for 5% softening in each pass after peak strain is not possible.


2016 ◽  
Vol 849 ◽  
pp. 181-185 ◽  
Author(s):  
Shi Lun Yu ◽  
Yong Hao Gao ◽  
Chu Ming Liu ◽  
Hong Chao Xiao

Dynamic recrystallization behavior of Mg-8.0Gd-3.0Y-0.5Zr (wt.%) alloy and the critical conditions corresponding to the onset of dynamic recrystallization were investigated using uniaxial compression tests conducted at temperatures ranging from 350 °C to 500 °C and strain rates ranging from 0.001 s-1 to 1 s-1. Results show that increasing temperature and/or decreasing strain rate can enhance the process of dynamic recrystallization of Mg-8.0Gd-3.0Y-0.5Zr alloy and lower the peak stress and corresponding strain. However, decreasing temperature and/or increasing strain rate can promote the occurrence of twin dynamic recrystallization (TDRX) within the original grains at the cost of reducing the total volume fraction of dynamically recrystallized grains in the microstructure. Besides, the critical stress and strain corresponding to the onset of dynamic recrystallization of Mg-8.0Gd-3.0Y-0.5Zr at 400 °C and 0.1 s-1 are 173MPa and 0.13, respectively.


2016 ◽  
Vol 850 ◽  
pp. 13-20 ◽  
Author(s):  
Ni Li ◽  
Fei Zhao ◽  
Huan Zhang ◽  
Yong Hai Ren

The dynamic recrystallization behavior of 18 Ni maraging steels was investigated by hot compression tests at temperatures ranging from 900 °C to 1100 °C and strain rates ranging from 0.001 to 1 s-1. Based on the flow curves from the tests, the effects of temperatures and strain rates on the dynamic recrystallization behavior were analyzed. The strain-hardening rates versus stress curves were used to determine to the critical strain, the peak stress (strain), the saturated stress and the steady stress. With the assistance of the process parameters, constitutive equations were obtained and the activation energy was determined to be 413544.96 J/mol. The dependence of the characteristic values on Zener-Hollomon was found. The dynamic recrystallization kinetics model of the tested steels was constructed and the validity was confirmed based on the experimental results.


2014 ◽  
Vol 584-586 ◽  
pp. 1011-1016
Author(s):  
Xiao Lei Zhang ◽  
Hui Li ◽  
Shi Xin Xu ◽  
Zhi Chao Li ◽  
Zhen Li Mi

The effect of process parameters on dynamic recrystallization of GCr15 bearing steel was investigated by a single-pass compression tests using Gleeble-3500 thermal simulator. The results indicate that the flow stress decreases with the increasing of temperature and the decreasing of strain rate. The dynamic recrystallization rate increases with the increasing of deformation temperature. By regression analysis, the mean activation energy and the stress exponent are determined to be 435.1KJ/mol-1and 5.0505 respectively. Meanwhile, the kinetic mathematical model of dynamic recrystallization and constitutive equation are established.The relationship of peak stress, peak strain and Z parameters is founded by using the data of flow stress curves.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1501 ◽  
Author(s):  
Pingping Qian ◽  
Zhenghua Tang ◽  
Li Wang ◽  
Charles W. Siyasiya

Hot deformation behavior of a high-titanium Nb-micro-alloyed steel was investigated by conducting hot compression tests at the temperature of 900–1100 °C and the strain rate of 0.005–10 s−1. Using a sinh type constitutive equation, the apparent activation energy of the examined steel was 373.16 kJ/mol and the stress exponent was 6.059. The relations between Zener–Hollomon parameters versus peak stress (strain) or steady-state stress (strain) were successfully established via the Avrami equation. The dynamic recrystallization kinetics model of the examined steel was constructed and the validity was confirmed based on the experimental results. The 3-D atomic distribution maps illustrated that strain can significantly affect the values of power dissipation efficiency and the area of instability domains. The 3-D processing maps based on a dynamic material model at the strains of 0.2, 0.4, 0.6 and 0.8 were established. Based on traditional and 3-D processing maps and microstructural evaluation, the optimum parameter of for a high-titanium Nb-micro-alloyed steel was determined to be 1000–1050 °C/0.1–1 s−1.


2013 ◽  
Vol 455 ◽  
pp. 71-76
Author(s):  
Hong Ke Wang ◽  
Li Wen Zhang ◽  
Sen Dong Gu ◽  
Qiu Hong Quan ◽  
Wen Fei Shen

The dynamic recrystallization (DRX) behavior of GH80A superalloy was investigated by isothermal compression tests on a Gleeble1500 thermomechanical simulator. True stress-strain curves and deformed specimens were obtained at the temperature range of 1273-1473K and the strain rate range of 0.01-5s-1. Experimental results show that the stress-strain curves at low strain rate display a typical DRX characteristic. By regression analysis of experimental results, Materials constant n, activation energy Q and Zener-Hollomon (Z) parameter were determined, and the critical strain model and austenite grain size model for dynamic recrystallization were established as a function of deformation temperature and strain rate. The dynamic recrystallization kinetic model for GH80A was established on the basis of the Avrami equation.


2015 ◽  
Vol 817 ◽  
pp. 444-448
Author(s):  
Chun Lei Gan ◽  
Kai Hong Zheng ◽  
Hai Yan Wang ◽  
Wen Jun Qi ◽  
Nan Zhou

The dynamic recrystallization (DRX) behavior of the new lead-free machinable brass was investigated by compression tests on a Gleeble-1500 thermal mechanics simulator in the temperatures range of 823-973 K and strain rates ranging from 0.01 to 1 s-1. On the basis of the hot compression data, critical stress (strain) or peak stress (strain) were determined with the assistance of the strain hardening rate versus stress curves. The dynamic recrystallization kinetics model of the lead-free machinable brass was established to evaluate the DRX behavior. The results will be beneficial to optimizing hot working processes of this new lead-free machinable brass.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Honghong Yan ◽  
Yong Hu ◽  
Dawen Zhao

Based on casting-rolling compound forming process, the effect of rare earth on dynamic recrystallization (DRX) of as-cast 30Mn steel was investigated by the single-pass hot compression tests performed using a Gleeble-3500 thermomechanical simulator, and the deformation temperature range was 950°C–1150°C and strain rate range was 0.1–1 s−1. With the assistance of the process parameters, constitutive equations were used to obtain the activation energy and hot working equation. The dynamic recrystallization kinetics models of the tested steel were constructed. The results show that rare earth ferrosilicon alloy addition (0.2%, mass fraction) can delay the onset of DRX significantly and refine the hot deformation microstructures. All of the results indicate that the addition of rare earth into as-cast 30Mn steel is helpful to prepare excellent cast slab for the casting-rolling compound forming technology.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1940 ◽  
Author(s):  
Jianmei Kang ◽  
Yuhui Wang ◽  
Zhimeng Wang ◽  
Yiming Zhao ◽  
Yan Peng ◽  
...  

Hot deformation behavior of Fe-30Mn-0.11C steel was investigated. Hot compression tests were carried out at various temperatures ranging from 800 °C to 1200 °C and at different strain rates of 0.01 s−1 to 10 s−1. The constitutive equation based on peak stress was established. Hot processing maps at different strains and recrystallization diagrams were also established and analyzed. The results show that dynamic recrystallization easily occur at high deformation temperatures and low strain rates. Safe and unstable zones are determined at the true strain of 0.6 and 0.7, and the hot deformation process parameters of partial dynamic recrystallization of the tested steel are also obtained.


2015 ◽  
Vol 816 ◽  
pp. 620-627
Author(s):  
Hao Yu Wang ◽  
Jian Xin Dong ◽  
Mai Cang Zhang ◽  
Lei Zheng ◽  
Zhi Hao Yao ◽  
...  

High temperature compression tests at a deformation temperature range of 1273K~1473K with various strain rates of 0.01s-1~0.1s-1 on as-cast GH625 alloy were carried out, aiming at the current research status that the deformation process of cogging and the recrystallization behavior of ingot are still in the study. The results indicated that the recrystallization nuclei of ingot formed not only along the original grain boundaries, but also in the interdendrite. Dynamic recrystallization volume percent increased with the increase of temperature and the decrease of strain rate. When the temperature was high and strain rate was low, the dynamic recrystallization behavior of as-cast GH625 alloy was dominated by discontinuous recrystallization. However, when the temperature was low and strain rate was high, continuous recrystallization also existed. These results can provide some reliable experimental support for the cogging process design.


Sign in / Sign up

Export Citation Format

Share Document