Effect of Deformation Conditions on Dynamic Recrystallization of As-Cast GH625 Alloy

2015 ◽  
Vol 816 ◽  
pp. 620-627
Author(s):  
Hao Yu Wang ◽  
Jian Xin Dong ◽  
Mai Cang Zhang ◽  
Lei Zheng ◽  
Zhi Hao Yao ◽  
...  

High temperature compression tests at a deformation temperature range of 1273K~1473K with various strain rates of 0.01s-1~0.1s-1 on as-cast GH625 alloy were carried out, aiming at the current research status that the deformation process of cogging and the recrystallization behavior of ingot are still in the study. The results indicated that the recrystallization nuclei of ingot formed not only along the original grain boundaries, but also in the interdendrite. Dynamic recrystallization volume percent increased with the increase of temperature and the decrease of strain rate. When the temperature was high and strain rate was low, the dynamic recrystallization behavior of as-cast GH625 alloy was dominated by discontinuous recrystallization. However, when the temperature was low and strain rate was high, continuous recrystallization also existed. These results can provide some reliable experimental support for the cogging process design.

2020 ◽  
Vol 321 ◽  
pp. 12008
Author(s):  
Y.Y. Luo ◽  
X.N. Mao ◽  
H.Y. Yang ◽  
Y.F. Yin ◽  
Z.Z. Zhao ◽  
...  

The dynamic recrystallization behavior of as-cast Ti-46.5Al-3Ta-2Cr-0.2W alloy during isothermal compression process with nominal deformation of 50% and strain rates from 0.01s to 1s was investigated by electron microscopy. The results showed that the deformation mechanism of this alloy can be concluded as grain boundary sliding and mechanical twins, which induce the final dynamic recrystallization. The phase boundary bulging was found to be the major nucleation mechanism responsible for the lamellar globularization and the formation of recrystallized γ grains inside the lamellar colony under the high strain rate. The recrystallized γ grains induced by the twinning is the main mechanism for refining α2 lamellar microstructures under low strain rate.


2016 ◽  
Vol 849 ◽  
pp. 181-185 ◽  
Author(s):  
Shi Lun Yu ◽  
Yong Hao Gao ◽  
Chu Ming Liu ◽  
Hong Chao Xiao

Dynamic recrystallization behavior of Mg-8.0Gd-3.0Y-0.5Zr (wt.%) alloy and the critical conditions corresponding to the onset of dynamic recrystallization were investigated using uniaxial compression tests conducted at temperatures ranging from 350 °C to 500 °C and strain rates ranging from 0.001 s-1 to 1 s-1. Results show that increasing temperature and/or decreasing strain rate can enhance the process of dynamic recrystallization of Mg-8.0Gd-3.0Y-0.5Zr alloy and lower the peak stress and corresponding strain. However, decreasing temperature and/or increasing strain rate can promote the occurrence of twin dynamic recrystallization (TDRX) within the original grains at the cost of reducing the total volume fraction of dynamically recrystallized grains in the microstructure. Besides, the critical stress and strain corresponding to the onset of dynamic recrystallization of Mg-8.0Gd-3.0Y-0.5Zr at 400 °C and 0.1 s-1 are 173MPa and 0.13, respectively.


2016 ◽  
Vol 850 ◽  
pp. 13-20 ◽  
Author(s):  
Ni Li ◽  
Fei Zhao ◽  
Huan Zhang ◽  
Yong Hai Ren

The dynamic recrystallization behavior of 18 Ni maraging steels was investigated by hot compression tests at temperatures ranging from 900 °C to 1100 °C and strain rates ranging from 0.001 to 1 s-1. Based on the flow curves from the tests, the effects of temperatures and strain rates on the dynamic recrystallization behavior were analyzed. The strain-hardening rates versus stress curves were used to determine to the critical strain, the peak stress (strain), the saturated stress and the steady stress. With the assistance of the process parameters, constitutive equations were obtained and the activation energy was determined to be 413544.96 J/mol. The dependence of the characteristic values on Zener-Hollomon was found. The dynamic recrystallization kinetics model of the tested steels was constructed and the validity was confirmed based on the experimental results.


2014 ◽  
Vol 0 (0) ◽  
Author(s):  
Y. Cao ◽  
H.S. Di ◽  
R.D.K. Misra

AbstractHot deformation behavior of AISI 420 stainless steel was studied under hot compression tests in the temperature range of 950 to 1150 °C and strain rates of 0.01 s


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 605
Author(s):  
Franco Lizzi ◽  
Kashyap Pradeep ◽  
Aleksandar Stanojevic ◽  
Silvana Sommadossi ◽  
Maria Cecilia Poletti

Inconel®718 is a well-known nickel-based super-alloy used for high-temperature applications after thermomechanical processes followed by heat treatments. This work describes the evolution of the microstructure and the stresses during hot deformation of a prototype alloy named IN718WP produced by powder metallurgy with similar chemical composition to the matrix of Inconel®718. Compression tests were performed by the thermomechanical simulator Gleeble®3800 in a temperature range from 900 to 1025 °C, and strain rates scaled from 0.001 to 10 s−1. Flow curves of IN718WP showed similar features to those of Inconel®718. The relative stress softening of the IN718WP was comparable to standard alloy Inconel®718 for the highest strain rates. Large stress softening at low strain rates may be related to two phenomena: the fast recrystallization rate, and the coarsening of micropores driven by diffusion. Dynamic recrystallization grade and grain size were quantified using metallography. The recrystallization grade increased as the strain rate decreased, although showed less dependency on the temperature. Dynamic recrystallization occurred after the formation of deformation bands at strain rates above 0.1 s−1 and after the formation of subgrains when deforming at low strain rates. Recrystallized grains had a large number of sigma 3 boundaries, and their percentage increased with strain rate and temperature. The calculated apparent activation energy and strain rate exponent value were similar to those found for Inconel®718 when deforming above the solvus temperature.


2018 ◽  
Vol 37 (2) ◽  
pp. 181-192 ◽  
Author(s):  
Xuemei Yang ◽  
Hongzhen Guo ◽  
Zekun Yao ◽  
Shichong Yuan

AbstractThe high-temperature plastic deformation and dynamic recrystallization behavior of BT25y alloy were investigated within the deformation temperatures of 1,213–1,293 K and strain rates of 0.001–1.0 s–1 on a Gleeble-1500 thermo-mechanical simulator. Results showed that the dynamic recrystallization (DRX) mechanism played an important role in the hot deformation of BT25y alloy. Based on the regression analysis of the true stress–strain data, the stress exponent and deformation activation energy of BT25y alloy were calculated to be 3.4912 and 288.0435 kJ/mol, respectively. The θ-σ and dθ/dσ–σ curves were plotted to further obtain the critical stress and critical strain for the occurrence of DRX. Based on the analysis results, the DRX kinetic model was established. The model was validated by the comparison between predicted and experimental volume fraction of DRX. As the DRX evolution was sensitive to deformation temperature and strain rate, quantities of dynamically recrystallized grains appeared at higher temperatures and lower strain rates.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2147
Author(s):  
Limin Zhu ◽  
Quanan Li ◽  
Qing Zhang ◽  
Xiaoya Chen

Dynamic precipitation of Mg–8.08Gd–2.41Sm–0.30Zr (wt %) alloy during hot compression was studied in the present work. The effects of temperature and strain rate on dynamic precipitation, and the effects of dynamic precipitation on dynamic recrystallization (DRX) and microhardness, were systematically analyzed. For this purpose, hot compression tests were conducted at the strain rates of 0.002~1 s−1 and temperatures of 350~500 °C, with the compaction strain of 70% (εmax = 0.7). The obtained results revealed that dynamic precipitation occurred during hot compression at 350~400 °C, but did not occur for T ≥ 450 °C. The precipitates were demonstrated to be β-Mg5Gd with a size of 200~400 nm, and they were distributed in the DRXed region. Dynamic precipitation occurred at strain rates in the 0.002~0.01 s−1 range, but did not occur when the strain rates were in the 0.1~1 s−1 range for the hot compression temperature of 350 °C. The relationships between the hot compression temperature (T) and DRXed grain size (lnd), microhardness (Hv), and DRXed grain size (d−1/2) of Mg–8.08Gd–2.41Sm–0.30Zr alloy were obtained.


2018 ◽  
Vol 37 (7) ◽  
pp. 635-647 ◽  
Author(s):  
Le Li ◽  
Li-yong Wang

AbstractIn order to study dynamic recrystallization behavior of the as-extruded 3Cr20Ni10W2 under isothermal compression conditions, a cellular automaton (CA) model was applied to simulate hot compression. Analysis on the strain–stress curves indicates that dynamic recrystallization is the main softening mechanism for the 3Cr20Ni10W2 when the deformation occurred in the temperature range of 1203–1303 K with an interval of 50 K and strain rate range of 0.01–10 s−1. The deformation temperature and strain rate have a significant influence on the dynamically recrystallized grain size. Subsequently, a CA model is established to simulate the dynamic recrystallization behaviors of the studied alloy. The simulated results show that the mean grain size increases with the increased deformation temperature and decreases with the increased strain rate, which is consistent with the experimental result. In addition, the average absolute relative error, which is 13.14%, indicates that the process of the dynamic recrystallization and the dynamically recrystallized grain size can be well predicted by the present CA model.


2016 ◽  
Vol 693 ◽  
pp. 674-679
Author(s):  
Hai Peng Ji ◽  
Li Ge Zhang ◽  
Jing Liu ◽  
Tai Yong Wang

The established cellular automata model of dynamic recrystallization for 316LN simulated microstructure evolution of recrystallization nucleation and grain growth under different conditions. And on the basis of cellular automata model, the influence of strain, strain rate, deformation temperature on dynamic recrystallization behavior was analyzed. Though the hot compress experiment done on the Gleeble-3500 thermo mechanical simulator, combined with metallographic experiment, the microstructure at deformation temperature of 950 oC, 1050 oC and 1150 oC with strain rate of 0.001 s-1, 0.01 s-1, 0.1 s-1 and 1 s-1 was obtained. Simulation results are compared with metallographic microstructure, the error is small.


2010 ◽  
Vol 654-656 ◽  
pp. 1275-1278 ◽  
Author(s):  
Yun Ping Li ◽  
Shingo Kurosu ◽  
Emi Onodera ◽  
Hiroaki Matsumoto ◽  
Akihiko Chiba

Dynamic recrystallization behavior of Co-29Cr-6Mo-0.16N alloy was analyzed in details. Compression tests were carried out in a computer aided Thermecmaster- Z hot forging simulator. The results showed that uniformly distributed superfine grain size could be obtained by continuous dynamic recrystallization (DRX) process; Texture-free microstructure with uniformly distributed equiaxed fine grains was obtained. The formation of profuse stacking faults and their subsequent intersections are considered to be the principle mechanisms of DRX.


Sign in / Sign up

Export Citation Format

Share Document