Influence of Spinel on the Fracture Energy of Refractory Castable

2013 ◽  
Vol 745-746 ◽  
pp. 632-635
Author(s):  
Hong Bin Qin ◽  
Hong Xia Li ◽  
Jian Dong Wang ◽  
Guo Qi Liu ◽  
Hai Xia Feng

The specific fracture energy of alumina-spinel refractory castables was studied by the wedge-splitting method in this paper. The influence of synthetic spinel on the specific fracture energy of aluminamagnesia refractory castables was investigated. In-situ formation spinel was replaced by sintering spinel as the synthetic spinel. The experimental results indicated that the specific fracture energy and the compressive flesural mechanical properties had the same changing trend with the increase of the synthetic spinel, but the thermal shock resistance of the materials showed the opposite trend. However, the thermal shock resistance was closely associated with the specific fracture energy according to one theory raised by Hasselman.

2012 ◽  
Vol 503-504 ◽  
pp. 1142-1145
Author(s):  
Fan Qian ◽  
Hong Xia Li ◽  
Guo Qi Liu ◽  
Wen Gang Yang ◽  
Jin Song Yang ◽  
...  

This paper introduce the relationship between fracture energy of refractories and its thermal shock resistance, and research status about fracture energy of refractories. It shows that investigation on fracture energy of refractories at high temperature is positive significance for evaluation of thermal shock resistance, and wedge splitting method for fracture energy of refractories is an effective method.


2013 ◽  
Vol 634-638 ◽  
pp. 2358-2361
Author(s):  
Jun Cong Wei ◽  
Li Rong Yang

The effects of Si3N4 addition on the room temperature physical properties and thermal shock resistance properties of corundum based refractory castables were investigated using brown corundum, white corundum and alumina micropowder as the starting materials and pure calcium aluminate as a binder. The phase composition, microstructure, mechanical properties of corundum based castables were investigated by means of X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results showed that as the increase in Si3N4 addition, the bulk density decreased and apparent porosity increased, the cold strength deduced. However, the residual strength rate increased. That is, the thermal shock resistance was improved. This is because even though the introduction of Si3N4 inhibited the sintering of material and deduced the compactness, microcracks were produced in the materials due to a difference in thermal expansion coefficient. So the thermal shock resistance of corundum based castable was improved.


2009 ◽  
Vol 79-82 ◽  
pp. 1983-1986 ◽  
Author(s):  
Xiao Li Ji ◽  
Fei Xu ◽  
Hai Ya Chen

Prepared silicon carbide(SiC) ceramic foams combined with mullite whiskers which synthesized by in-situ reaction. Studied on the influence of temperature on the synthesis of mullite whisker, and the influence of mullite content on the compressive strength, thermal shock resistance of SiC ceramic foams. The results indicate that the performance of mullite whiskers synthesized at 1400°Cwere best, when mullite content was 25%, SiC ceramic foams could reach the maximum compressive strength for 1.75MP, the most thermal shock resistance for14 times.


2016 ◽  
Vol 42 (8) ◽  
pp. 10175-10183 ◽  
Author(s):  
Jianfeng Wu ◽  
Yaxiang Zhang ◽  
Xiaohong Xu ◽  
Tengfei Deng ◽  
Xinbin Lao ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3050
Author(s):  
Hai Tang ◽  
Chunxue Li ◽  
Jianying Gao ◽  
Bruno Touzo ◽  
Chunfeng Liu ◽  
...  

Aiming at optimizing properties of alumina-spinel refractory castables, coarse corundum particles were replaced partially with the particles of a novel porous multi-component CMA (CaO-MgO-Al2O3) aggregate in the same size. Properties including the bulk density, apparent porosity, strength, slag corrosion resistance, thermal shock resistance and thermal fatigue resistance of alumina-spinel refractory castables containing CMA aggregates were evaluated contrastively. The results demonstrated that the incorporation of CMA aggregates can significantly improve thermal shock resistance and thermal fatigue resistance of castables, although companying with slight decrease in the bulk density and strength. Moreover, slag penetration resistance of castables can also be enhanced by CMA aggregates with appropriate particle size. The influence of CMA aggregates on properties of alumina-spinel refractory castables depended strongly on their particle size.


2017 ◽  
Vol 11 (2) ◽  
pp. 106-112 ◽  
Author(s):  
Xudan Dang ◽  
Meng Wei ◽  
Rui Zhang ◽  
Keke Guan ◽  
Bingbing Fan ◽  
...  

Mullite whisker reinforced Al2O3-SiC composites were in situ synthesized by microwave sintering at 1500?C for 30min. The influence of SiC particle size on heating process and properties of Al2O3-SiC composite were investigated. The XRD and SEM techniques were carried out to characterize the samples. The thermal shock resistance and flexural strength of the samples were examined through water quenching and three-point bending methods, respectively. It was found that the bridging of mullite whisker appeared between Al2O3 and SiC particles which enhanced the thermal shock resistance. A so-called local hot spot effect was proposed dependent on the coupling of SiC particles with microwave, which was the unique feature of microwave sintering. The maximal thermal shock resistance and flexural strength were obtained for the samples with SiC particle size of ~5?m.


Sign in / Sign up

Export Citation Format

Share Document