Numerical Study on the Influence of Different Anvils on Explosive Welding

2013 ◽  
Vol 767 ◽  
pp. 114-119 ◽  
Author(s):  
Jian Rui Feng ◽  
Peng Wan Chen ◽  
Kai Da Dai ◽  
Er Feng An ◽  
Yuan Yuan

Explosive welding is an efficient method for metals welding. However, in explosive welding, the shock wave generated by the explosion can not only damage the sensitive structure in the area of the process, but also can actually destroy a welded joint immediately after its creation. By placing an additional structure (anvil) can reduce the influence of shock waves. The influence of different anvil on the explosive welding of aluminum and magnesium plates has been investigated by using AUTODYN Software in this paper. The results show that the steel anvil is much more appropriate than sand and magnesium.

2017 ◽  
Vol 831 ◽  
pp. 271-288 ◽  
Author(s):  
Alessandro A. Filippi ◽  
Beric W. Skews

An experimental and numerical study was conducted to examine the effects of internal surface curvature and leading-edge angle on the shock waves and steady flow fields produced by axisymmetric ring wedges. Test models with leading-edge-radius-normalised internal radii of curvature of $R_{c}=\{1,1.5,2\}$ and leading-edge angles of $\unicode[STIX]{x1D6FC}=\{0^{\circ },4^{\circ },8^{\circ }\}$ were manufactured and tested. Experimental shadowgraph and schlieren results were obtained for Mach numbers ranging from 2.8 to 3.6 using a blowdown supersonic wind tunnel with accompanying numerical results for additional insight. The higher the internal surface curvature and leading-edge angle, the greater the flow fields were impacted. As a result, steeper compression waves were formed, thus curving the shock wave more noticeably. The internal surface curvature and leading-edge angle were both found to have an effect on the trailing-edge expansion fans. This altered the shape of downstream shock wave structures. The highest curvature models produced steady double reflection patterns due to the imposed internal surface curvature. The effects of conical and curved internal surfaces were explored for the presence of flow-normal curvature and the curving of the attached shock waves.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


2014 ◽  
Vol 10 ◽  
pp. 27-31
Author(s):  
R.Kh. Bolotnova ◽  
U.O. Agisheva ◽  
V.A. Buzina

The two-phase model of vapor-gas-liquid medium in axisymmetric two-dimensional formulation, taking into account vaporization is constructed. The nonstationary processes of boiling vapor-water mixture outflow from high-pressure vessels as a result of depressurization are studied. The problems of shock waves action on filled by gas-liquid mixture volumes are solved.


2021 ◽  
Vol 11 (11) ◽  
pp. 4736
Author(s):  
Saleh Baqer ◽  
Dimitrios J. Frantzeskakis ◽  
Theodoros P. Horikis ◽  
Côme Houdeville ◽  
Timothy R. Marchant ◽  
...  

The structure of optical dispersive shock waves in nematic liquid crystals is investigated as the power of the optical beam is varied, with six regimes identified, which complements previous work pertinent to low power beams only. It is found that the dispersive shock wave structure depends critically on the input beam power. In addition, it is known that nematic dispersive shock waves are resonant and the structure of this resonance is also critically dependent on the beam power. Whitham modulation theory is used to find solutions for the six regimes with the existence intervals for each identified. These dispersive shock wave solutions are compared with full numerical solutions of the nematic equations, and excellent agreement is found.


2011 ◽  
Vol 673 ◽  
pp. 265-270 ◽  
Author(s):  
Akihisa Mori ◽  
Li Qun Ruan ◽  
Kazumasa Shiramoto ◽  
Masahiro Fujita

Detonating code is a flexible code with an explosive core. It is used to transmit the ignition of explosives with high detonation velocity in the range of 5.5 to 7 km/s. However, it is difficult to use detonating code for the explosive welding of common metals since the horizontal point velocity usually exceeds the sound velocity. Hence, in the present work, a new method using underwater shock wave generated by the detonation of detonating code was tried. The details of the experimental parameters and the results are presented. From the results it is observed that the above technique is suitable to weld thin metal plates with relatively less explosives.


1996 ◽  
Vol 14 (2) ◽  
pp. 157-169 ◽  
Author(s):  
Yuan Gu ◽  
Sizu Fu ◽  
Jiang Wu ◽  
Songyu Yu ◽  
Yuanlong Ni ◽  
...  

The experimental progress of laser equation of state (EOS) studies at Shanghai Institute of Laser Plasma (SILP) is discussed in this paper. With a unique focal system, the uniformity of the laser illumination on the target surface is improved and a laser-driven shock wave with good spatial planarity is obtained. With an inclined aluminum target plane, the stability of shock waves are studied, and the corresponding thickness range of the target of laser-driven shock waves propagating steadily are given. The shock adiabats of Cu, Fe, SiO2 are experimentally measured. The pressure in the material is heightened remarkably with the flyer increasing pressure, and the effect of the increasing pressure is observed. Also, the high-pressure shock wave is produced and recorded in the experimentation of indirect laser-driven shock waves with the hohlraum target.


Sign in / Sign up

Export Citation Format

Share Document