Columnar Grain Growth with Enhanced Rotation Texture in Temper Rolled NO Silicon Steels

2014 ◽  
Vol 782 ◽  
pp. 201-204 ◽  
Author(s):  
Ivan Petryshynets ◽  
František Kováč ◽  
Mária Molnárová ◽  
Petra Gavendová ◽  
Martin Sopko ◽  
...  

The present work investigates texture evolution stages in vacuum-degassed non-oriented electrical steels. The main idea behind the improvement of soft magnetic properties relies on deformation induced grain growth phenomena and heat transport phenomena promoting the preferable formation of columnar grains with so called cube crystallographic orientation {100}<0vw>. In order to achieve the desired orientation with appropriate microstructure state from magnetic properties point of view, we have used an adjusted temper rolling process at elevated temperature and subsequent dynamical annealing in laboratory conditions.

2007 ◽  
Vol 558-559 ◽  
pp. 657-664 ◽  
Author(s):  
Jong Tae Park ◽  
Jae Kwan Kim ◽  
Jerzy A. Szpunar

The magnetic properties of nonoriented electrical steels are influenced by grain size and texture of final products. The key technology in the commercial production of nonoriented electrical steels is to grow grains with {hk0}<001> texture up to the optimum size in the final annealing process. The problems related to grain size control have been extensively investigated, while texture control has received much less attention. Therefore, there is enough room to improve the magnetic properties through the control of texture. In this study, systematic investigations on the texture evolution during both recrystallization and grain growth have been made. The formation of recrystallization texture is explained by oriented nucleation. This is supported by the fact that the area fraction of nuclei or recrystallized grains with specific orientation to all new grains remains almost constant during the progress of recrystallization. Most nuclei have a high misorientation angle of 25∼55° with the surrounding deformed matrices. During the progress of grain growth, the Goss texture component continues to decrease because the Goss grains have a high percentage of low angle, low mobility grain boundaries. The grains of Goss orientation have a smaller grain size than those of random orientation.


2011 ◽  
Vol 702-703 ◽  
pp. 758-761 ◽  
Author(s):  
Tuan Nguyen Minh ◽  
Jurij J. Sidor ◽  
Roumen H. Petrov ◽  
Leo Kestens

The core loss and magnetic induction of electrical steels are dependent on the microstructure and texture of the material, which are produced by the thermo-mechanical processing. After a conventional rolling process, crystal orientations of the α-(//RD) and γ-(//ND) fibers are strongly present in the final texture. These fibers have a drastically negative effect on the magnetic properties of electrical steels. By applying asymmetric rolling, significant shear strains could be introduced across the thickness of the sheet and thus a deformation texture with more magnetically favorable components is expected. In this study, an electrical steel of 1.23 wt.% Si was subjected to asymmetric warm rolling in a rolling mill with different roll diameters. The evolutions of both deformed and annealed textures were investigated. The texture evolution during asymmetric warm rolling was analyzed by crystal plasticity simulations using the ALAMEL model. A good fit between measured and calculated textures was obtained. The annealing texture could be understood in terms of an oriented nucleation model that selects crystal orientations with a lower than average stored energy of plastic deformation.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2200 ◽  
Author(s):  
Ivan Petryshynets ◽  
František Kováč ◽  
Ján Füzer ◽  
Ladislav Falat ◽  
Viktor Puchý ◽  
...  

Currently, the non-oriented (NO) iron-silicon steels are extensively used as the core materials in various electrical devises due to excellent combination of their mechanical and soft magnetic properties. The present study introduces a fairly innovative technological approach applicable for fully finished NO electrical steel before punching the laminations. It is based on specific mechanical processing by bending and rolling in combination with subsequent annealing under dynamic heating conditions. It has been revealed that the proposed unconventional treatment clearly led to effective improvement of the steel magnetic properties thanks to its beneficial effects involving additional grain growth with appropriate crystallographic orientation and residual stress relief. The philosophy of the proposed processing was based on employing the phenomena of selective grain growth by strain-induced grain boundary migration and a steep temperature gradient through the cross-section of heat treated specimens at dynamic heating conditions. The stored deformation energy necessary for the grain growth was provided by plastic deformation induced within the studied specimens during the bending and rolling process. The magnetic measurements clearly show that the specimens treated according to our approach exhibited more than 17% decrease in watt losses in comparison with the specimens treated by conventional heat treatment leading only to stress relief without additional grain growth.


2005 ◽  
Vol 495-497 ◽  
pp. 543-554 ◽  
Author(s):  
Fernando José Gomes Landgraf ◽  
Sebastião Da Costa Paolinelli ◽  
Marco Antônio Da Cunha ◽  
Marcos Flavio de Campos

The non-oriented electrical steels, produced with different processing procedures, base their magnetic property improvement mainly on the increase of the Goss component. This paper relates the anisotropy of magnetic properties to texture, describes the texture evolution in both the Fully-processed and the Semi-processed classes of electrical steels.


2011 ◽  
Vol 702-703 ◽  
pp. 738-741
Author(s):  
H. Qian ◽  
Ping Yang ◽  
G.H. Zheng ◽  
Wei Min Mao

To identify the relationship between grain orientation and precipitation of MnS/AlN particles during hot deformation, cylinder samples containing columnar grains in electrical steels were prepared with different angles between columnar grain axis and sample axis. They were heated at 1360°C and compressed at 1100°C for 50%. Grain orientations and the precipitation states are determined using XRD, EBSD, EDS and SEM. Results indicate a general behavior of less precipitates in <100> and more precipitates in <111> grains. In addition, more precipitates were observed in samples with grain boundaries perpendicular to compression axis.


2007 ◽  
Vol 550 ◽  
pp. 533-538 ◽  
Author(s):  
Jong Tae Park ◽  
Jae Young Choi ◽  
Jae Kwan Kim ◽  
Jerzy A. Szpunar

In nonoriented electrical steels, the control of texture has received little attention, and hence there is an unexplored possibility to improve the magnetic properties of nonoriented steels through texture control. Furthermore, the formation of recrystallization texture in these steels has not yet been systematically studied. In this study, such systematic investigations are undertaken for nonoriented electrical steels with 2% Si. New information obtained from EBSD measurements on partially recrystallized specimens will allow us to know what is happening during the recrystallization stage. The formation of recrystallization texture is much better explained by oriented nucleation. This is supported by the fact that the area fraction of nuclei or recrystallized grains with specific orientations for all new grains remains almost constant during the progress of recrystallization. Most nuclei have a high misorientation relationship with the surrounding deformed matrix: 25~55. The main texture components of nuclei or recrystallized grains during the progress of recrystallization are Goss and {111}<112>. Deformed {111}<110> and {111}<112> grains generally disappear at the early stage of recrystallization whereas deformed {001}<110> and {112}<110> grains are mostly consumed at the late stage of recrystallization.


2019 ◽  
Vol 243 ◽  
pp. 8-18 ◽  
Author(s):  
E.J. Gutiérrez Castañeda ◽  
C.N. Palafox Cantú ◽  
A.A. Torres Castillo ◽  
A. Salinas Rodríguez ◽  
R. Deaquino Lara ◽  
...  

2011 ◽  
Vol 702-703 ◽  
pp. 726-729
Author(s):  
Jong Tae Park ◽  
Hyung Don Joo ◽  
Dae Hyun Song ◽  
Kyung Jun Ko ◽  
No Jin Park

Desirable magnetic properties for grain oriented electrical steels are low core loss and high magnetic flux density. These properties are closely related with sharpness of {110} texture. This Goss texture develops by abnormal grain growth during secondary recrystallization annealing. Based on experimental results, a general suggestion which estimates the magnetic properties after completion of secondary recrystallization from a primary recrystallized texture can be proposed. For a material to have better magnetic properties after completion of secondary recrystallization, it should have a primary recrystallized texture in which there are not only large number of ideal Goss grains, but also lower frequency of low angle grain boundary around those Goss grains.


Sign in / Sign up

Export Citation Format

Share Document