Study of Chocolate Clay (Boa Vista, Paraíba) Organophilization Using the Mixture of Quaternary Ammonium Salts through Direct Method

2014 ◽  
Vol 805 ◽  
pp. 672-677
Author(s):  
Wellington Siqueira Lima ◽  
Meiry Gláucia Freire Rodrigues ◽  
Mariaugusta Ferreira Mota ◽  
Aline Cadígena Lima Patrício ◽  
Marcílio Máximo Silva

The organoclays contain intercalated organic molecules in their structural layers. The more clay used to prepare organoclays are those derived from the smectite group bentonites mainly due to the small size of crystals and high cation exchange capacity, which facilitate the intercalation of organic compounds. This work aims to obtain organoclays from a mixture of two different quaternary ammonium salts in a 1:1 ratio through the direct method of organophilization. This procedure will be performed using the clay Chocolate from the municipality of Boa Vista, Paraíba state, which has in its composition of smectite clay minerals group. The samples were characterized by X-ray diffraction (XRD) and infrared spectroscopy (IR). The testing Foster swelling in a later step, using different organic solvents: gasoline, diesel and kerosene were used to investigate the compatibility clays after modification with the salts.

2006 ◽  
Vol 530-531 ◽  
pp. 702-708 ◽  
Author(s):  
Edcleide Maria Araújo ◽  
K.D. Araujo ◽  
Taciana Regina de Gouveia Silva

Nanocomposites containing nylon 66 and montmorillonite clay organically modified with quaternary ammonium salts were obtained via direct melt intercalation. A montmorillonite sample from Boa Vista/PB, Northeast of Brazil, was treated with three types of quaternary ammonium salts such as Genamin, Praepagen and Cetremide. After the treatment, the powder was characterized by X-ray diffraction (XRD). The produced nanocomposites were characterized by Torque Rheometer, Infrared Spectroscopy (FTIR), mechanical properties and HDT. The obtained results for rheological characterization showed that the nanocomposites did not present deterioration with the presence of modified clay. Generally, the mechanical properties of tensile of the systems presented superior values compared to that of pure Ny 66. HDT's properties presented very interesting values for the nanocomposites and significantly larger than for pure nylon 66.


2012 ◽  
Vol 727-728 ◽  
pp. 1591-1595 ◽  
Author(s):  
Aline Cadigena Lima Patrício ◽  
Marcílio Máximo da Silva ◽  
Anna Karoline Freires de Sousa ◽  
Mariaugusta Ferreira Mota ◽  
Meiry Glaúcia Freire Rodrigues

Cationic surfactants, such as quaternary ammonium cations, have been used, in order to ameliorate the oil sorption capacity of inorganics materials, such as clays. Clays modified with quaternary ammonium cations (organoclays) have better performance in sorption, remove oil and grease from water at seven times the rate of activated carbon, as well as they can be used like perforation fluids of oil wells to the oil base, lubricants, among others industries. This work aims characterize the Cloisite 30B using various techniques: X-Ray Diffraction (XRD), Specific Surface Area (BET) and Cation Exchange Capacity. Different organic solvents, namely gasoline, diesel and kerosene were used in order to investigate the clays compatibility after orgophilization.


2013 ◽  
Vol 669 ◽  
pp. 103-107 ◽  
Author(s):  
Jian Guo Sheng ◽  
Ping Zeng

A series of organic montomorilonite were prepared by using Sodium monanorilonite(Na-MMT) as raw material and quaternary ammonium salts with different chain long as intercalation agents by the way of ion exchange method. Weightlessness experiment showed that intercalated agents could alleviate the corrosion of metal. The MMT and organic MMT (OMMT) were identified by infrared spectra (FTIR) and X-ray diffraction (XRD). The results showed that intercalation agents had intercalated into the interlayer space of MMT, and the spacing of MMT layers had increased from 1.51 nm to 2.94 nm.


Clay Minerals ◽  
1974 ◽  
Vol 10 (3) ◽  
pp. 135-144 ◽  
Author(s):  
G. Brown ◽  
P. Bourguignon ◽  
J. Thorez

AbstractA bluish-green clay found in veins cutting across brecciated slates of the Llanvirnian stage at Huy, Belgium, is shown by X-ray diffraction and chemical analysis to be a lithium-bearing, aluminium-rich, regular mixed layer montmorillonite-chlorite with associated pyrophyllite, nacrite and quartz and smaller amounts of calcite and ankerite. The cation exchange capacity of the purified air-dry magnesium saturated clay is 49 mEq/100 g and its structural formula isThe problem of the nomenclature of regular mixed layer montmorillonite-chlorites is discussed.


2015 ◽  
Vol 820 ◽  
pp. 56-59
Author(s):  
F.K.A. Sousa ◽  
I.A. Silva ◽  
W.S. Cavalcanti ◽  
Gelmires Araújo Neves ◽  
Heber Carlos Ferreira

Used in various branches of the industry, bentonitic clays are considered a valuable mineral, used specially in the petroleum industry for manufacturing of fluids used the drilling of petroleum wells in long depth. Recently, a deposit of this valuable mineral was discovered in the town of Olivedos-PB. There are data that prove that this is a very poor and underdeveloped town. So, this work aims at the physico-mineralogical characterization of clays recently discovered and, this way, verify if they present similar characteristics which allow them to replace the clays from Boa Vista-PB, and if they can be used by the industry, thus bringing social development for that town. The characterization was made by means of the analysis of chemical composition by X-ray fluorescence (EDX), thermogravimetric and thermal differential analyses (TG and DTA), X-ray diffraction (XRD), cation-exchange capacity (CEC) and specific area (SA). The results show that the clays recently discovered in Olivedos-PB are polycationic clays, presenting MgO, CaO and K2O content, and that they are constituted by smectitic clay mineral, by quartz and kaolinite.


Clay Minerals ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 15-24 ◽  
Author(s):  
S. Ramirez ◽  
D. Righi ◽  
S. Petit

AbstractHydrolytic exchange was performed experimentally on four smectitic clays to evaluate the extent of clay alteration induced by this process and the associated ‘auto-transformation’ of H+ clays. Clay samples were Na-saturated and submitted to 10, 50 and 100 wetting-drying (WD) cycles and characterized after treatment using X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity analysis. Evidence for hydrolytic exchange was given by increasing amounts of exchangeable Mg2+ and precipitation of Na soluble salts for samples subjected to 100 WD cycles. Results indicated a decrease in the interlayer charge after 10 WD cycles but no further decrease was observed after 50 and 100 WD cycles. For one sample, XRD data indicated a decrease in the proportion of the smectite phase and a relative increase in the concentration of illite-smectite mixed layers also present in the sample. The results suggested that the reaction induces first a decrease in the layer charge and then a partial dissolution of some smectite layers.


2021 ◽  
Vol 7 (5) ◽  
pp. 2010-2018
Author(s):  
Olukayode Gideon Oloyede ◽  
◽  
Umar Omeiza Aroke ◽  
Saidat Olanipekun Giwa ◽  
Alexander Asanja Jock ◽  
...  

In this study, Dijah-Monkin bentonite clay was modified with a cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) at the level of twice the cation exchange capacity (CEC). This process results in the development of hydrophobic organoclay with an improved adsorption capacity. The clay obtained from Zing LGA Taraba State, North-East Nigeria, was beneficiated and pulverised to a particle size of 125 µm. The modification was performed without acid activation to prevent damages to the clay’s crystal structure. The organoclay was characterised for chemical composition, functional groups, mineralogical and surface morphology using X-ray fluorescence (XRF), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD showed an increase in the basal spacing from 15.681Å to 17.758 Å, while the XRF revealed a 5.35% concentration of Br on the modified clay, indicating successful intercalation. The FTIR spectra also revealed the appearance of symmetric and asymmetric stretching bands at 2847.7cm-1 and 2914.8cm-1, respectively, as a consequence of the modification, resulting in more sites for adsorption.


2021 ◽  
Author(s):  
Ting Wei ◽  
Noman Yashir ◽  
Fengqiu An ◽  
Syed Asad Imtiaz ◽  
Xian Li ◽  
...  

Abstract Microbially induced carbonate precipitation (MICP) is an advanced bioremediation approach to remediate heavy metals (HMs) contaminated water and soil. In this study, metal tolerant urease-producing bacterial isolates, namely UR1, UR16, UR20 and UR21, were selected based on their urease activity. The efficiency of these isolates in water for Pb and Cd immobilization was explored. Our results revealed that UR21 had the highest removal rates of Pb (81.9%) and Cd (65.0%) in solution within 72 h through MICP. The scanning electron microscopy-energy dispersive x-ray and x-ray diffraction analysis confirmed the structure and the existence of PbCO3 and CdCO3 crystals in the precipitates. In addition, the strain UR21, in combination with urea/eggshell waste (EGS) or both, was further employed to investigate the effect of MICP on soil enzymatic activity, chemical fractions and bioavailability of Pb and Cd. The outcomes indicated that the applied treatments reduced the proportion of soluble-exchangeable Pb and Cd, resulted an increment in carbonated bound Pb and Cd in the soil. The DTPA extractable Pb and Cd was reduced by 29.2% and 25.2% with the treatment of UR21 + urea + EGS as compared to the control. Besides, the application of UR21 and EGS significantly increased the soil pH, cation exchange capacity, and enzyme activities. Our findings may provide a novel perceptive for an eco-friendly and sustainable approach to remediate heavy metal contaminated environment through a combination of metal-resistant ureolytic bacterial strain and EGS.


2006 ◽  
Vol 530-531 ◽  
pp. 709-714 ◽  
Author(s):  
Edcleide Maria Araújo ◽  
Amanda D. de Oliveira ◽  
Renata Barbosa ◽  
Tomás Jefférson Alves de Mélo

In this work, polyethylene/montmorillonite clay nanocomposites were produced by melt intercalation. The clays were treated with quaternary ammonium salts and then treated and untreated clays were introduced in polyethylene. The clays were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FT-IR). The nanocomposites were characterized by mechanical and flammability properties. The results showed that the mechanical properties were improved by introduction of organoclay in polyethylene matrix. By adding only 3wt% montmorillonite, the burning rate of the nanocomposites was reduced by 17% in relation to PE matrix.


1973 ◽  
Vol 51 (11) ◽  
pp. 1558-1565 ◽  
Author(s):  
G. G. Jacoli ◽  
W. P. Ronald ◽  
L. Lavkulich

The inhibition of ribonuclease activity by bentonite and the adsorption of the protein molecule within the clay matrix were assessed by enzyme and X-ray diffraction analysis, respectively.Pretreatment of bentonite with EDTA, potassium, barium, and barium–EDTA caused varying expansion of the d(001) spacing of the clay. The d(001) variation was sensitive to pH.Inhibition of the enzyme activity generally followed the pattern of expansion of the d(001) spacing of the clay, but failed when the interlayers of bentonite expanded beyond their maximum capability.Vermiculite, which is a clay having a higher cation exchange capacity than bentonite, did not expand from the normal state after similar treatment nor did it inhibit ribonuclease activity.When the secondary and tertiary structures of the protein molecule were disrupted, the denatured protein still entered the interlayers of bentonite, but caused a greater expansion of the d(001) spacing than the native ribonuclease.


Sign in / Sign up

Export Citation Format

Share Document