scholarly journals Characterisation of Natural and HDTMA-Br Modified Dijah-Monkin Bentonite Clay: FTIR, XRF, XRD and SEM

2021 ◽  
Vol 7 (5) ◽  
pp. 2010-2018
Author(s):  
Olukayode Gideon Oloyede ◽  
◽  
Umar Omeiza Aroke ◽  
Saidat Olanipekun Giwa ◽  
Alexander Asanja Jock ◽  
...  

In this study, Dijah-Monkin bentonite clay was modified with a cationic surfactant hexadecyltrimethylammonium bromide (HDTMA-Br) at the level of twice the cation exchange capacity (CEC). This process results in the development of hydrophobic organoclay with an improved adsorption capacity. The clay obtained from Zing LGA Taraba State, North-East Nigeria, was beneficiated and pulverised to a particle size of 125 µm. The modification was performed without acid activation to prevent damages to the clay’s crystal structure. The organoclay was characterised for chemical composition, functional groups, mineralogical and surface morphology using X-ray fluorescence (XRF), Fourier Transform Infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The XRD showed an increase in the basal spacing from 15.681Å to 17.758 Å, while the XRF revealed a 5.35% concentration of Br on the modified clay, indicating successful intercalation. The FTIR spectra also revealed the appearance of symmetric and asymmetric stretching bands at 2847.7cm-1 and 2914.8cm-1, respectively, as a consequence of the modification, resulting in more sites for adsorption.

Clay Minerals ◽  
2014 ◽  
Vol 49 (5) ◽  
pp. 683-692 ◽  
Author(s):  
F. Kooli

AbstractOrgano-bentonites were prepared using a bentonite and an aqueous cetyltrimethylammonium hydroxide solution. The ratio of the surfactant (in mmoles) to the cation exchange capacity varied from 0.5 to 20, with 20 being the highest ratio ever reported in the literature. At high surfactant to cation exchange capacity ratios, the interlayer spacing increased to 3.75 nm due to the formation of a paraffin-type bilayer of surfactant cations, which was shown to be mainly in gauche conformations using solid state 13C CP/NMR. When the exchange reaction was carried out in a methanol-water mixture, the expansion of the organo-bentonites depended on the concentration of methanol (% by volume). The decomposition temperatures of the organic cations depended on the basal spacing of the organo-bentonites, and in situ X-ray diffraction revealed that the basal spacing of our organo-bentonites was stable up to 210°C. Above this temperature, the basal spacing shrunk to 1.47 nm due to decomposition of the surfactants.


2013 ◽  
Vol 838-841 ◽  
pp. 2306-2309
Author(s):  
Guang Hua Wang ◽  
Kun Chen ◽  
Wen Bing Li ◽  
Dong Wan ◽  
Qin Hu ◽  
...  

Magnetic modified organobentonite (Fe3O4/CTAB–Bent) was synthesized by chemical co-precipitation method in which CTAB–Bent was firstly achieved via ion–exchange.The composite materials have been characterized by powder X–ray diffraction (XRD), Fourier transform infrared spectroscopy (FT–IR) and Scanning electron microscopy (SEM) . The results revealed that basal spacing of bentonite was increased through organic modification and the Fe3O4 particles synthesized which covering the surfaces of bentonite .Compared with natural bentonite, the adsorption capacity of Fe3O4/CTAB–Bent for Orange II was greatly enhanced and can be easily separated from the reaction medium by an external magnetic field after the treatment.


Clay Minerals ◽  
1974 ◽  
Vol 10 (3) ◽  
pp. 135-144 ◽  
Author(s):  
G. Brown ◽  
P. Bourguignon ◽  
J. Thorez

AbstractA bluish-green clay found in veins cutting across brecciated slates of the Llanvirnian stage at Huy, Belgium, is shown by X-ray diffraction and chemical analysis to be a lithium-bearing, aluminium-rich, regular mixed layer montmorillonite-chlorite with associated pyrophyllite, nacrite and quartz and smaller amounts of calcite and ankerite. The cation exchange capacity of the purified air-dry magnesium saturated clay is 49 mEq/100 g and its structural formula isThe problem of the nomenclature of regular mixed layer montmorillonite-chlorites is discussed.


Cerâmica ◽  
2016 ◽  
Vol 62 (361) ◽  
pp. 1-8 ◽  
Author(s):  
J. L. Alves ◽  
A. E. Zanini ◽  
M. E. de Souza ◽  
M. L. F. Nascimento

Abstract Clays obtained from nature have a lot of impurities. Therefore, for best using of these materials, it is necessary its selection and purification. Thus, the aim of this work is to separate and to purify the smectite fractions using water as a solvent at a low flux mixed with a bentonite clay extracted from a mine in Vitória da Conquista - Bahia / Brazil. For this a separation method of fractions of expandable clays based on the Stokes' Law was applied - this process is called elutriation, in order to ensure and to expand possible industrial applications of this material. The samples were characterized by analysis of X-ray diffraction, X-ray fluorescence and scanning electron microscopy. The Rietveld method enabled the quantification of main phase minerals: montmorillonite, kaolinite, nontronite and quartz, reaching 85% in mass of montmorillonite phase at the end of the process. Results showed that the method used was efficient to remove almost all quartz, carbonates and organic matter from the sample. It was also observed a monomodal grain size distribution of elutriated materials with thinner grains, around (18.1 ± 1.8) μm at the end of the process. It has been concluded that the method developed and applied showed promising characters to be applied to elutriate kilograms of clays and could be used in industrial scale.


2012 ◽  
Vol 727-728 ◽  
pp. 1591-1595 ◽  
Author(s):  
Aline Cadigena Lima Patrício ◽  
Marcílio Máximo da Silva ◽  
Anna Karoline Freires de Sousa ◽  
Mariaugusta Ferreira Mota ◽  
Meiry Glaúcia Freire Rodrigues

Cationic surfactants, such as quaternary ammonium cations, have been used, in order to ameliorate the oil sorption capacity of inorganics materials, such as clays. Clays modified with quaternary ammonium cations (organoclays) have better performance in sorption, remove oil and grease from water at seven times the rate of activated carbon, as well as they can be used like perforation fluids of oil wells to the oil base, lubricants, among others industries. This work aims characterize the Cloisite 30B using various techniques: X-Ray Diffraction (XRD), Specific Surface Area (BET) and Cation Exchange Capacity. Different organic solvents, namely gasoline, diesel and kerosene were used in order to investigate the clays compatibility after orgophilization.


2015 ◽  
Vol 820 ◽  
pp. 56-59
Author(s):  
F.K.A. Sousa ◽  
I.A. Silva ◽  
W.S. Cavalcanti ◽  
Gelmires Araújo Neves ◽  
Heber Carlos Ferreira

Used in various branches of the industry, bentonitic clays are considered a valuable mineral, used specially in the petroleum industry for manufacturing of fluids used the drilling of petroleum wells in long depth. Recently, a deposit of this valuable mineral was discovered in the town of Olivedos-PB. There are data that prove that this is a very poor and underdeveloped town. So, this work aims at the physico-mineralogical characterization of clays recently discovered and, this way, verify if they present similar characteristics which allow them to replace the clays from Boa Vista-PB, and if they can be used by the industry, thus bringing social development for that town. The characterization was made by means of the analysis of chemical composition by X-ray fluorescence (EDX), thermogravimetric and thermal differential analyses (TG and DTA), X-ray diffraction (XRD), cation-exchange capacity (CEC) and specific area (SA). The results show that the clays recently discovered in Olivedos-PB are polycationic clays, presenting MgO, CaO and K2O content, and that they are constituted by smectitic clay mineral, by quartz and kaolinite.


2014 ◽  
Vol 917 ◽  
pp. 115-122 ◽  
Author(s):  
Ali E.I. Elkhalifah ◽  
Mohammad Azmi Bustam ◽  
Mohd Shariff Azmi ◽  
T. Murugesan

A series of organic-inorganic hybrids were developed via intercalation process of primary, secondary and tertiary ammonium cations into different alkali and alkaline earth and transition metal cation forms of bentonite clay to be used as adsorbent materials for CO2capture under ambient temperature and slightly high pressure. The effect of the molar mass of amines on the structural characteristics, surface properties and CO2loading capacity of bentonite clay were investigated by X-ray diffraction, Brunauer-Emmett-Teller method and Magnetic Suspension Balance equipment, respectively. X-ray diffraction results revealed that the basal spacing of bentonite clay after modification with amines was increased with the molar mass of amine used, while BET results showed an inverse effect of the molar mass of amines on the surface area of the synthesized materials. The CO2loading capacity of the examined samples revealed that bentonite clay modified with monoethanolammonium cations retained higher CO2amount compared to those modified with di-and triethanolammonium cations. CO2adsorption isotherms on MEA+-Mg-MMT were conducted at 298, 323 and 348 K and different pressures. A decrease in CO2uptake with increasing temperature was observed, suggesting the exothermic nature of the adsorption process.


Clay Minerals ◽  
2005 ◽  
Vol 40 (1) ◽  
pp. 15-24 ◽  
Author(s):  
S. Ramirez ◽  
D. Righi ◽  
S. Petit

AbstractHydrolytic exchange was performed experimentally on four smectitic clays to evaluate the extent of clay alteration induced by this process and the associated ‘auto-transformation’ of H+ clays. Clay samples were Na-saturated and submitted to 10, 50 and 100 wetting-drying (WD) cycles and characterized after treatment using X-ray diffraction (XRD), infrared spectroscopy (FTIR) and cation exchange capacity analysis. Evidence for hydrolytic exchange was given by increasing amounts of exchangeable Mg2+ and precipitation of Na soluble salts for samples subjected to 100 WD cycles. Results indicated a decrease in the interlayer charge after 10 WD cycles but no further decrease was observed after 50 and 100 WD cycles. For one sample, XRD data indicated a decrease in the proportion of the smectite phase and a relative increase in the concentration of illite-smectite mixed layers also present in the sample. The results suggested that the reaction induces first a decrease in the layer charge and then a partial dissolution of some smectite layers.


2021 ◽  
Author(s):  
Ting Wei ◽  
Noman Yashir ◽  
Fengqiu An ◽  
Syed Asad Imtiaz ◽  
Xian Li ◽  
...  

Abstract Microbially induced carbonate precipitation (MICP) is an advanced bioremediation approach to remediate heavy metals (HMs) contaminated water and soil. In this study, metal tolerant urease-producing bacterial isolates, namely UR1, UR16, UR20 and UR21, were selected based on their urease activity. The efficiency of these isolates in water for Pb and Cd immobilization was explored. Our results revealed that UR21 had the highest removal rates of Pb (81.9%) and Cd (65.0%) in solution within 72 h through MICP. The scanning electron microscopy-energy dispersive x-ray and x-ray diffraction analysis confirmed the structure and the existence of PbCO3 and CdCO3 crystals in the precipitates. In addition, the strain UR21, in combination with urea/eggshell waste (EGS) or both, was further employed to investigate the effect of MICP on soil enzymatic activity, chemical fractions and bioavailability of Pb and Cd. The outcomes indicated that the applied treatments reduced the proportion of soluble-exchangeable Pb and Cd, resulted an increment in carbonated bound Pb and Cd in the soil. The DTPA extractable Pb and Cd was reduced by 29.2% and 25.2% with the treatment of UR21 + urea + EGS as compared to the control. Besides, the application of UR21 and EGS significantly increased the soil pH, cation exchange capacity, and enzyme activities. Our findings may provide a novel perceptive for an eco-friendly and sustainable approach to remediate heavy metal contaminated environment through a combination of metal-resistant ureolytic bacterial strain and EGS.


1973 ◽  
Vol 51 (11) ◽  
pp. 1558-1565 ◽  
Author(s):  
G. G. Jacoli ◽  
W. P. Ronald ◽  
L. Lavkulich

The inhibition of ribonuclease activity by bentonite and the adsorption of the protein molecule within the clay matrix were assessed by enzyme and X-ray diffraction analysis, respectively.Pretreatment of bentonite with EDTA, potassium, barium, and barium–EDTA caused varying expansion of the d(001) spacing of the clay. The d(001) variation was sensitive to pH.Inhibition of the enzyme activity generally followed the pattern of expansion of the d(001) spacing of the clay, but failed when the interlayers of bentonite expanded beyond their maximum capability.Vermiculite, which is a clay having a higher cation exchange capacity than bentonite, did not expand from the normal state after similar treatment nor did it inhibit ribonuclease activity.When the secondary and tertiary structures of the protein molecule were disrupted, the denatured protein still entered the interlayers of bentonite, but caused a greater expansion of the d(001) spacing than the native ribonuclease.


Sign in / Sign up

Export Citation Format

Share Document