Preparation and Properties of Triazine Dithiol-Silane Composite Self-Assembled Hydrophobility Films on Stainless Steel Surfaces

2014 ◽  
Vol 809-810 ◽  
pp. 554-562 ◽  
Author(s):  
Ming Ming Hu ◽  
Dong Ming Zhang

Self-assembled method for controllable fabrication of a hydrophobic triazine dithiol-silane composite film on 304 stainless steel (SS) is reported in this paper. Hierarchical structure composed of micro/nanofeatherlike surface was obtained by acid etching. After modification with 2-( Dibutylamino )-4,6-dimercapto-1,3,5-triazine ( DB ) and n-octadecyltrichlorosilane ( OTS ), the suface became hydrophobicity. By applying SEM, FTIR-RAS, and water contact angle analysis, the surface morphology and hydrophobicity of the as-prepared surfaces were studied in detailed. The results indicated that at the optimal condition, the surface showed a good hydrophobicity with a water contact angle as high as 152±3°. Possible growth mechanism of featherlike hierarchical structure was discussed. Additionally, the anticorrosion effect of the hydrophobic surface was studied by potentiodynamic polarization measurement. It showed that the surface covered with hydrophobic composite film was found to be more positive than bare and monolayer, the corrosion current was significantly lower to 1.68 nA/cm2, and the corrosion potential shifted positively from-253 mV to-118 mV ( vs SEC ).

2003 ◽  
Vol 774 ◽  
Author(s):  
Joanne Deval ◽  
Teodoro A. Umali ◽  
Brandee L. Spencer ◽  
Esther H. Lan ◽  
Bruce Dunn ◽  
...  

AbstractThe fabrication of micron-scale channels and reaction chambers using micromachining techniques has created devices with large surface to volume ratios. As a result, surface properties play a major role in determining the behavior of micromachined devices. In this work, we present strategies that can be used to reconfigure surfaces from hydrophobic to hydrophilic or from hydrophilic to hydrophobic. The reversible nature of the surface is made possible by using deposition and removal of biomolecules or amphiphiles on self-assembled monolayers (SAMs). When the initial surface was hydrophobic (using a CH3-terminated SAM on the surface, water contact angle ∼100), it was rendered hydrophilic (water contact angle ≤60°) using monolayer adsorption of avidin protein. To retrieve the hydrophobicity, the avidin was subsequently removed using non-ionic surfactant octyl-β-D-glucopyranoside. Moreover, by incorporating a biotinylated poly(ethyleneglycol), the avidin-coated surface was resistant to further non-specific adsorption. If the initial surface was hydrophilic (using a CO2H-terminated SAM on the surface, water contact angle ≤20°), it was rendered hydrophobic (water contact angle >90°) using monolayer amphiphilic octadecylamine adsorption. The hydrophilicity was restored after subsequently removing the amphiphile using anionic surfactant sodium lauryl sulfate. Both types of surfaces showed excellent reversibility and demonstrated the ability to control surface wettability.


2012 ◽  
Vol 557-559 ◽  
pp. 1916-1920
Author(s):  
Wen Shi Ma ◽  
Fang Yang ◽  
Bang Jun Deng ◽  
Hai Yan Sun ◽  
Xiao Dan Lin

A novel hydrophilic and self-assemble functional methoxy polyethylene oxide propyl trimethoxysilane was synthesized by hydrosilylation reaction using methoxy polyethylene oxide monoallyl ether and trimethoxysilane. The self-assembled layer of methoxy polyethylene oxide propyl trimethoxysilane was prepared by immersing hydroxylate silicon substrate in silane solution. The structure, morphology and hydrophilicity of self-assembled layer were characterized by means of X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and water contact angle method. The results show that methoxy polyethylene oxide propyl trimethoxysilane can self-assemble on the surface of hydroxylate silicon substrate. At concentration of 0.80 g/100 mL and the self-assembling time of 60 minutes, the self-assembled layer of methoxy polyethylene oxide propyl trimethoxysilane of average molecular weight of 682 shows a brush-like structure with each brush column size of 10~15 nm in diameter and 5~8 nm in height. The correspondence of the columns height with the average length of the silane molecules suggests that the layer obtained is monolayer and the brush columns are constituted by extended PEO molecular chain units in the silane. The distribution of columns is uniform and the root-mean-square(RMS) roughness of self-assembled monolayer is 0.98 nm. Water contact angle of the monolayer is 7.4°. A super-hydrophilic surface is obtained.


2014 ◽  
Vol 6 (15) ◽  
pp. 12707-12712 ◽  
Author(s):  
Chun-Nan Wu ◽  
Tsuguyuki Saito ◽  
Quanling Yang ◽  
Hayaka Fukuzumi ◽  
Akira Isogai

Author(s):  
D. F. Lim ◽  
X. F. Ang ◽  
J. Wei ◽  
C. M. Ng ◽  
C. S. Tan

In this article, a self-assembled monolayer (SAM) is applied onto the copper surface in an attempt to lower the required bonding temperature. Alkane-thiol with 6-carbon chain length is used and tested for bonding experiment. The adsorption of SAM is confirmed by the sharp rise of the water contact angle measurement and the reduced in the surface roughness. Next, the desorption of SAM is done at a high temperature anneal (<300°C) in an inert ambient and its properties are characterized by the water contact angle measurement and XPS. It is found that the water contact angle measurement decreases sharply close back to the contact angle of the pure blanket copper surface after annealing of SAM. The XPS results also show the ability of SAM in protecting Copper surface from oxidation. Finally, shear test is performed on Cu-Cu structures bonded at low temperature (250°C) in order to verify the SAM behavior in protecting the copper surface from oxidation and enhancement for bonding. The wafer pairs with and without SAM are intentionally exposed in clean room environment for few days. The bonded pieces are diced and subject to shear stress and results show that with SAM protection, shear strength is improved due to the enhancement in grain growth as a result of cleaner surface.


2020 ◽  
Author(s):  
Muayad Al-shaeli ◽  
Stefan J. D. Smith ◽  
Shanxue Jiang ◽  
Huanting Wang ◽  
Kaisong Zhang ◽  
...  

<p>In this study, novel <a>mixed matrix polyethersulfone (PES) membranes</a> were synthesized by using two different kinds of metal organic frameworks (MOFs), namely UiO-66 and UiO-66-NH<sub>2</sub>. The composite membranes were characterised by SEM, EDX, FTIR, PXRD, water contact angle, porosity, pore size, etc. Membrane performance was investigated by water permeation flux, flux recovery ratio, fouling resistance and anti-fouling performance. The stability test was also conducted for the prepared mixed matrix membranes. A higher reduction in the water contact angle was observed after adding both MOFs to the PES and sulfonated PES membranes compared to pristine PES membranes. An enhancement in membrane performance was observed by embedding the MOF into PES membrane matrix, which may be attributed to the super-hydrophilic porous structure of UiO-66-NH<sub>2</sub> nanoparticles and hydrophilic structure of UiO-66 nanoparticles that could accelerate the exchange rate between solvent and non-solvent during the phase inversion process. By adding the MOFs into PES matrix, the flux recovery ratio was increased greatly (more than 99% for most mixed matrix membranes). The mixed matrix membranes showed higher resistance to protein adsorption compared to pristine PES membranes. After immersing the membranes in water for 3 months, 6 months and 12 months, both MOFs were stable and retained their structure. This study indicates that UiO-66 and UiO-66-NH<sub>2</sub> are great candidates for designing long-term stable mixed matrix membranes with higher anti-fouling performance.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andrzej Sikora ◽  
Dariusz Czylkowski ◽  
Bartosz Hrycak ◽  
Magdalena Moczała-Dusanowska ◽  
Marcin Łapiński ◽  
...  

AbstractThis paper presents the results of experimental investigations of the plasma surface modification of a poly(methyl methacrylate) (PMMA) polymer and PMMA composites with a [6,6]-phenyl-C61-butyric acid methyl ester fullerene derivative (PC61BM). An atmospheric pressure microwave (2.45 GHz) argon plasma sheet was used. The experimental parameters were: an argon (Ar) flow rate (up to 20 NL/min), microwave power (up to 530 W), number of plasma scans (up to 3) and, the kind of treated material. In order to assess the plasma effect, the possible changes in the wettability, roughness, chemical composition, and mechanical properties of the plasma-treated samples’ surfaces were evaluated by water contact angle goniometry (WCA), atomic force microscopy (AFM), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The best result concerning the water contact angle reduction was from 83° to 29.7° for the PMMA material. The ageing studies of the PMMA plasma-modified surface showed long term (100 h) improved wettability. As a result of plasma treating, changes in the samples surface roughness parameters were observed, however their dependence on the number of plasma scans is irregular. The ATR-FTIR spectra of the PMMA plasma-treated surfaces showed only slight changes in comparison with the spectra of an untreated sample. The more significant differences were demonstrated by XPS measurements indicating the surface chemical composition changes after plasma treatment and revealing the oxygen to carbon ratio increase from 0.1 to 0.4.


Sign in / Sign up

Export Citation Format

Share Document