Study on the Gold Leaching Process by Potassium Ferricyanide

2015 ◽  
Vol 814 ◽  
pp. 273-277
Author(s):  
Ping Tang ◽  
Jing Liu ◽  
Min Wei Song ◽  
Hai Ping Yu ◽  
Xu Zhang

The traditional gold leaching method is cyanidation, which carries serious security and environmental problems. More and more attention is paid to the research on non-cyanide process. A high-arsenic-and-sulphur refractory gold concentrate in Sichuan was taken as the object of study. After the roasting-oxidation pretreatment of the sample, potassium ferricyanide was adopted to carry on the process experiment on gold-leaching. The leaching results as well as correlative process conditions were both investigated. The results showed that good leaching effects could be achieved by potassium ferricyanide. When the amount of potassium ferricyanide was 60g/L, the concentration of NaOH 0.2mol/L, the liquid-solid ratio 6:1 and the leaching process at room temperature lasted for 20h, the gold leaching rate reached 88.1%. If the leaching aid CaO2 is added simultaneously, it can contribute to the gold leaching. When the amount of CaO2 was 3g/L, the gold leaching rate increased to more than 94%, the amount of potassium ferricyanide decreased to 50g/L and the leaching time reduced to 14h.

2015 ◽  
Vol 1094 ◽  
pp. 415-418
Author(s):  
Fei Wang Wang ◽  
Yi Qi Cui ◽  
Xiong Tong ◽  
Dan Dan Xie

In this research, a fine disseminated gold ore in Yunnan, After four ore exploration tests of chemical pretreatment, get a reasonable oxidation-leaching process that: W-1 (60 kg/t) and M-3 (45 kg/t) used in conjunction with inflated amount of 0.5 m3/h, under the condition of 75°C, stirring pretreated for 24 h, the ore sample after pretreatment was filtered to take a certain amount ,at the condition of normal temperature and pressure, NH4SCN 0.6 mol/L, KMnO4 10 g/L, slurry solid ratio of pulp is 4:1, stirring time is 5 h, pH value is 3. Under these conditions, the gold leaching rate up to 82.26%.


2011 ◽  
Vol 79 ◽  
pp. 242-247 ◽  
Author(s):  
Wang Zhong Mu ◽  
Ting An Zhang ◽  
Zhi He Dou ◽  
Guo Zhi Lü ◽  
Lan Hu ◽  
...  

Oxygen pressure acid leaching process was used to extract vanadium from vanadium slag (Panzhihua steelmaking plant of China). The single factor experiment was finished and the effects of temperature, leaching time, liquid to solid ratio, stirring speed, initial concentration of sulfuric acid, and were investigated on the leaching rate of vanadium, titanium and iron. The leachate and residue were characterized by ICP, XRF, XRD, SEM and EDX. The experiment results indicate when temperature is 140 °C, leaching time is 120 min, liquid to solid ratio is 20:1(ml:g), stirring speed is 500 rpm, initial acid concentration is 200 g/L, oxygen partial pressure is 0.5 MPa, and particle size is -0.075~+0.055 mm, leaching rate of vanadium is 97.89% and the content of vanadium in the residue is 0.586%. Leaching rate of titanium and iron is 12.78% and 94.45% respectively. Vanadium could be extracted effectively through the oxygen pressure acid leaching process.


2011 ◽  
Vol 201-203 ◽  
pp. 1774-1779
Author(s):  
Ze Biao Zhang ◽  
Wan Kun Wang ◽  
Jin Hui Peng

The leaching tests of nickel supported activated carbon under normal pressure in (NH4)2SO4were studied. The effects of experimental condition, such as initial concentration of (NH4)2SO4, liquid-to-solid ratio, leaching time and leaching temperature on the leaching rate of nickel, were investigated. The results show that the leaching rate of nickel is 96.12% with initial concentration of (NH4)2SO4of 7.5%, liquid-to-solid ratio of 2, leaching time of 5h and leaching temperature of 25°C. The morphology of nickel supported activated carbon before and after leaching was characterized by XRD, which proved the effective separation of nickel and activated carbon. The leaching rate of nickel was also shown better at room temperature and atmospheric pressure. Moreover, it needn’t equipments enduring high-pressure and high temperature in the leaching process, thus reducing the costs of leaching equipments greatly. This work provides a new way to the comprehensive utilization of nickel-containing activated carbon.


2011 ◽  
Vol 396-398 ◽  
pp. 504-507
Author(s):  
Cheng Xi

Coal vanadium ore from Hunan was pretreated by sulfuric acid for curing. Influences of curing time, curing temperature, sulphuric acid concentration and ore size fraction on vanadium leaching rate were investigated and discussed. Test results showed that: -100 mesh ore size was cured by 20% added quantity of sulphuric acid at 180°C for 24h and was leached by agitation with tap water, the liquid solid ratio of 4: 1 at room temperature for 12h, vanadium leaching rate was 74%


2012 ◽  
Vol 610-613 ◽  
pp. 81-85
Author(s):  
Qing Li ◽  
Bao Liang Ge ◽  
Jie Liu ◽  
Chao Zhu

The ore assays 2.5g/t Au, 23.4% S and 56.6% Fe. This research enriched the gold by flotation, and recovered it by a chemical process. The obtained flotation concentrate contains 66.35%g/t gold and 37.06% S with recovery 96.14% and 96.42% respectively. A roasting process was conducted at 900-1000°C for 5.5hrs, followed by cyanide leaching of the residue. The gold leaching rate reaches 87.4% with an adsorption rate of 97.6%. Furthermore, the regrinding of the concentrate to 95% -0.18μm was conducted, and followed by cyanide leaching at pH11.5 for 12hrs. The results show the amount leached gold reaches 92.5% with an adsorption rate of 99.21%, which increases by 1.61% and 5.1% in comparison with the roasting-leaching process.


2012 ◽  
Vol 581-582 ◽  
pp. 1106-1109
Author(s):  
Chao Zhu ◽  
Bao Liang Ge ◽  
Zhao Yi Lu ◽  
Wen Zhu

This study reached a gold ore which contain 3.83g/t gold, to investigate the available gold recover methods, direct cyanide leaching test and “biooxidation-cyanide” leaching process were utilized after enrich gold by flotation. When regrinding the flotation concentrate to 95% -325mm, the leaching rate of “biooxidation-cyanide” leaching reached 94.47%, compare with direct leaching, the leaching rate increased almost 67%. Obviously bacterium oxidation is a useful pretreatment for gold leaching.


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 601 ◽  
Author(s):  
Huimin Xie ◽  
Shiwei Li ◽  
Libo Zhang ◽  
Yongmi Wang ◽  
Hailin Long

A method of conventional roasting pretreatment combined with ultrasonic enhanced leaching with ammonium acetate was proposed to solve the difficult problem of lead in electrolytic manganese anode mud. The effects of concentration, liquid–solid ratio, temperature, leaching time and rotating speed on the leaching process under conventional and ultrasonic conditions were studied, and the lead leaching rate can be as high as 93.09% under optimized process parameters. A leaching kinetic model under conventional and ultrasonic conditions was established to explore the restrictive links of the leaching process. The results show that the leaching process under both conventional and ultrasonic conditions is controlled by diffusion, and the activation energies are 29.40 kJ/mol and 26.95 kJ/mol for the conventional and ultrasound enhance leaching processes, respectively.


2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Yang ◽  
Xuechen Lan ◽  
Qian Wang ◽  
Ping Dong ◽  
Gang Wang

With a telluride-type gold ore flotation concentrate as the research object, the Na2S + NaOH collaborative leaching process was applied to selectively separate tellurium before the cyanide leaching of gold and silver. The effects of process parameters including the type of leaching agent, the amount of leaching agent, liquid-solid ratio, leaching temperature, and leaching time on the leaching rate of tellurium were investigated. The results showed that the tellurium leaching rate could reach 78.14% under the optimum conditions of −0.038 mm (95%) grinding fineness, 80 g/L Na2S concentration, 30 g/L NaOH concentration, 4:1 liquid-solid ratio, 80°C leaching temperature and 3 h′s leaching time. The kinetic analysis showed that the leaching process of tellurium from telluride-type gold concentrate was a mixed type of chemical reaction control and diffusion control. The grain parameter in the leaching process was 0.26263 and the apparent activation energy E = 17.12 kJ/mol. Tellurium could be pre-leached from the telluride-type gold flotation concentrate through the Na2S + NaOH alkaline leaching process to achieve the effective separation of tellurium from noble metals, which, when eliminating the adverse effects of telluride on the leaching of gold and silver, provides new ideas for the extraction of rare element tellurium.


2012 ◽  
Vol 524-527 ◽  
pp. 1997-2003
Author(s):  
Hai Yun Xie ◽  
Zhuo Yue Lan ◽  
Shu Ming He ◽  
Li Kun Gao ◽  
Xiong Tong

The usage of high-arsenic sulfide copper concentrate were limited because the arsenic in the concentrate harms the qualities of copper product and pollutes the environment. In this paper an innovative process for high-arsenic copper sulfide concentrate with with bio-oxidation respectively Thiobacillus ferrooxidans and moderate thermophile Sulfobacillus thermosulfidooxidans has been studied out, and the influencing factors have been comparative studied during the leaching process, such as concentration particle size, leaching methods, pulp concentration, leaching time and the initial concentration of Fe3+, etc. Under the suitable leaching conditions, the experiments results show that the concentrate is leached 47.13% of Cu,50.09% of As and 52.46% of Fe by Thiobacillus ferrooxidans and 82.39% of Cu,78.21% of As and 40.38% of Fe by moderate thermophile Sulfobacillus thermosulfidooxidans. The high concentration initial Fe3+ has speeded leaching process up in the presence of moderate thermophile Sulfobacillus thermosulfidooxidans, and when the pulp initial concentration of Fe3+ is in the range of 0.08~0.32mol/L, the leaching rate of Cu is 86.34~97.06%, As 89.22~94.13%. It is concluded that Sulfobacillus thermosulfidooxidans have a better effect on bioleaching high-arsenic sulfide copper concentrate than Thiobacillus ferrooxidans.


2013 ◽  
Vol 734-737 ◽  
pp. 1033-1036
Author(s):  
Gui Fang Zhang ◽  
Peng Yan ◽  
Qing Rong Yang

Based on the benefication of the complex silicate ore containing scandium, the research about aid-leaching agent used in the leaching of the scandium concentrate was been conducted. And the suitable leaching agent and aid-leaching agent which the useful ions entered into leaching liquid and the harmful ions were kept in leaching residue were been found according to the experiment results. For the scandium of sample existed various complex silicate ore as isomorphism form, the research has adopted hydrochloric acid with aid-leaching agent to dissociate the silicate ore and make scandium entering into solution. The research results has shown that the scandium leaching rate could reach 92.06% under the optimal conditions which the hydrochloric acid concentration is 22.8%, the dosage of aid leaching agent is 6%, liquid solid ratio is 4:1, particle size of leaching material totally is less than 0.15mm and leaching time is 8h.


Sign in / Sign up

Export Citation Format

Share Document