Microstructure and Mechanical Responses of Extruded Magnesium Alloy Sheets with Lithium Addition

2015 ◽  
Vol 816 ◽  
pp. 504-509 ◽  
Author(s):  
Qing Shan Yang ◽  
Bin Jiang ◽  
Jun Jie He ◽  
Zheng Yuan Gao ◽  
Jia Hong Dai ◽  
...  

After 5% lithium was added to AZ31 magnesium alloy, the alloy was extruded at 380oC with the extrusion ratio of 101. Mechanical responses and microstructure evolution were investigated. The microstructure and texture evolution were examined by electronic backscattered diffraction (EBSD) and X-ray diffraction (XRD). Tensile tests in the tensile directions of 0o, 45oand 90owere carried out at room temperature. Lithium addition brought about the strong divergence of the grain orientation and triggered the spread of the (0002) basal texture. The room temperature ductility of the extruded Mg alloy sheets was improved due to the tilted weak basal texture.

2015 ◽  
Vol 816 ◽  
pp. 399-403
Author(s):  
Qing Shan Yang ◽  
Bin Jiang ◽  
Wei Jiang ◽  
Bo Song ◽  
Su Qing Luo ◽  
...  

AZ31 magnesium alloy and its alloy with 5% lithium were extruded to 1mm in thickness sheets at 380 oC with extrusion ratio of 101. Microstructure evolution and mechanical behavior of the extruded Mg alloy sheets were examined. The microstructure and texture evolution were investigate by electronic backscattered diffraction (EBSD) and X-ray diffraction (XRD). Mechanical performance was carried out by tensile tests at room temperature. In addition, the evolution of neutral layer and microstructure was also examined by V-bending. It was found that Li addition resulted in the strong divergence of the grain orientation. (0002) basal texture of AZ31 alloy sheets with 5% lithium has been weakened. The room temperature ductility of these textural sheets was enhanced owing to the tilted weak basal texture. Moreover, it exhibits superior ductility during V-bending process at room temperature.


2014 ◽  
Vol 783-786 ◽  
pp. 375-379
Author(s):  
Mitsuaki Furui ◽  
Shouyou Sakashita ◽  
Kazuya Shimojima ◽  
Tetsuo Aida ◽  
Kiyoshi Terayama ◽  
...  

Extrusion-torsion simultaneous processing is a very attractive technique for fabricating a rod-shape material with fine grain and random texture. We have proposed a new screw form rolling process combined with preliminary extrusion-torsion simultaneous working. Microstructure evolution and mechanical property change of AZ91D magnesium alloy during extrusion-torsion simultaneous processing was examined through microstructure observation, X-ray diffraction analysis and micro-Vickers hardness measurement. By the addition of torsion, the crystal orientation of AZ91D magnesium alloy workpiece was drastically changed from basal crystalline orientation to the random orientation. Crystal grain occurred through the dynamic recrystallization and tended to coarsen with an increase of extrusion-torsion temperature. Grain refinement under 2 um was achieved at the lowest extrusion-torsion temperature of 523 K. M8 gauge AZ91D magnesium alloy screw was successfully formed at room temperature using the extrusion-twisted workpiece preliminary solution treating at 678 K for 345.6 ks. It was found that the extrusion-torsion temperature of 678 K must be selected to fabricate the good screw without any defects.


2010 ◽  
Vol 654-656 ◽  
pp. 819-822
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui ◽  
Yuya Takahashi ◽  
Shota Fujino

In this study, we focused on the sintering performance of Ti-4.5Al-3V-2Mo-2Fe (SP-700) and mechanical properties of SP-700 reinforced with titanium boride (TiB/SP-700) fabricated by spark plasma sintering (SPS). TiB whiskers formed in titanium by a solid-state reaction of titanium and TiB2 particles were analyzed with scanning electron microscopy and X-ray diffraction. The TiB/SP-700 was sintered at temperatures of 1073, 1173, and 1273 K and a pressure of 70 MPa for 10, 30, and 50 min. The volume fraction of TiB ranged from 1.7 vol.% to 19.9 vol.%. Tensile tests of TiB/SP-700 were conducted at room temperature, and the effect of TiB volume fraction on the tensile properties was investigated.


2010 ◽  
Vol 654-656 ◽  
pp. 2126-2129 ◽  
Author(s):  
Yuichi Nakahira ◽  
Tomonari Inamura ◽  
Hiroyasu Kanetaka ◽  
Shuichi Miyazaki ◽  
Hideki Hosoda

Effect of nitrogen (N) addition on mechanical properties of Ti-Cr-Sn alloy was investigated in this study. Ti-7mol%Cr-3mol%Sn was selected and less than 0.5wt% of N were systematically added. The alloys were characterized by optical microscopy, X-ray diffraction analysis and tensile tests at room temperature. The apparent phase was β (bcc) phase, whereas the presence of precipitates was confirmed in 0.5wt%N-added alloy only which did not exhibit sufficient cold workability. The grain size was not largely affected by N addition being less than 0.5wt%. Tensile tests revealed that less than 0.5wt%N addition improves the strength which is due to the solution hardening by interstitial N atoms.


2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


2017 ◽  
Vol 898 ◽  
pp. 300-304
Author(s):  
Qing Shan Yang ◽  
Wen Jun Liu ◽  
Zu Jian Yu

The microstructure and mechanical responses of the AZ31 with the addition of 1.8% Sn alloys have been studied and compared. Mg alloy sheets were prepared with metal model casting method and subsequent processes by conventional extrusion (CE) and differential speed extrusion (DSE). Mg alloys were hot extruded at 400oC with the extrusion ratio of 101:1. The microstructure of Mg alloy sheets was examined by optical microscopy (OM) and scanning electron microscope (SEM). The results indicated that the grains were dynamically recrystallized after the extrusion process. Moreover, DSE process dramatically enhanced the room temperature ductility of the extruded sheets. It was also presented that the Mg alloy processed by DSE exhibite a classical dimple structure as a result of slip accumulation and ductile tear.


Author(s):  
L. S. Lin ◽  
G. W. Levan ◽  
S. M. Russell ◽  
C. C. Law

AEM examinations of a NiAlCo alloy of composition Ni-29 at.% Al-21 at.% Co after room temperature compression show that the microstructure consists of a twinned tetragonal matrix (L10, marked A in Figure 1a) and ordered fcc gamma prime precipitates (L12, marked B in Figure 1a) along grain boundaries. The compressive yield strengths of this alloy at room temperature and 760°C are 754 MPa and 163 MPa respectively. It also has superior room temperature ductility as compared to binary NiAl. An addition of 5 at.% Ti at the expense of Ni was made to this alloy in order to increase the yield strengths. The quarternary alloy shows compressive yield strengths of 976 MPa and 403 MPa at room temperature and 760°C, respectively, indicating that the Ti addition is having the desired effect.Comparison of the microstructures of the two alloys after room temperature compression (Figures la and lb) shows that the Ti containing alloy has a smaller grain size. X-ray diffraction data indicate that the gamma prime volume fraction increases from 10% to 20% as the result of the Ti addition. Titanium was also found to stabilize the B2 matrix (marked A in Figure lb) as no tetragonal L10 phase was found. All precipitates along grain boundaries were identified by micro-diffraction to be gamma prime.


2009 ◽  
Vol 23 (06n07) ◽  
pp. 914-919 ◽  
Author(s):  
GUOPING YANG ◽  
WENCHEN XU ◽  
DEBIN SHAN

Backward tube spinning experiment of BT20 ( Ti -6 Al -2 Zr -1 Mo -1 V ) alloy was carried out with an aim to examine texture evolution of titanium alloy in spinning process. The initial texture and the spinning texture were investigated by X-ray diffraction, and deformation history of a single-pass spinning was analyzed using finite element method. Tilt basal texture occurs when thickness reduction reaches a medium level (~ 49% for the outer surface and ~ 58% for the inner surface in the present study) and that further deformation promotes the formation of central basal texture. During early several passes basal texture in the outer surface develops more rapidly and intensely than that in the inner surface due to much larger deformation. However, the maximum intensity of texture in the inner surface reaches a higher level in subsequent passes for the following two reasons: (1) the discrepancy between equivalent deformation in the internal layer and that in the external layer reduces with increasing deformation; (2) material in the inner surface undergoes much smaller transverse shear deformation. Spinning texture is characterized by its asymmetry, which results from asymmetric spinning deformation investigated by analyzing deformation histories of material particles located in the inner and outer surface.


2014 ◽  
Vol 556-562 ◽  
pp. 310-313
Author(s):  
Yong Jun Jiang

In this paper, we report a significant improvement in mechanical and oxidation properties of near eutectic Nb–Si alloys by the addition of aluminum (Al) and control of microstructural length scale. Thus in order to develop new alloys, we have to choose proper alloying elements keeping all the above issues in mind. Among the non-transition elements such as Al, Ga, Ge, Sn, and Al is most attractive from the point of view of enhancing the oxidation resistance and room temperature ductility due to substitution of Si with metallic Al . Al forms oxides which are even more thermodynamically stable than Si and Nb based oxides. Al is also soluble in Nb to a greater degree in conjunction with other refractory elementsFig.1 The figure shows composite X-ray diffraction patterns of each sample exposed to air for one hour in a TGA furnace at above mention temperatures.


Sign in / Sign up

Export Citation Format

Share Document