Influence of Austenite Grain Size on Martensite Start Temperature of Nb-V-Ti Microalloyed Ultra-High Strength Steel

2016 ◽  
Vol 848 ◽  
pp. 624-632 ◽  
Author(s):  
Ji Dong ◽  
Chen Xi Liu ◽  
Yong Chang Liu ◽  
Chong Li ◽  
Qian Ying Guo ◽  
...  

In order to investigate the effect of austenite grain size on martensite start temperature of Nb-V-Ti micro-alloyed ultra-high strength steel, the phase transformation features of Nb-V-Ti micro-alloyed steel was investigated. It has been found that martensite start temperature increased with the increase of austenite grain size as a consequence of the increase of austenitizing temperature. Based on microstructure observation, two types of MX carbonitrides with different compositions and morphologies have been identified. With the increase of the austenite grain size, both the volume fraction of precipitates and the dislocation density decreased, which may be induced by the strengthening of the austenite matrix directly and increasing the resistance of austenite to plastic deformation. Hence, the increase of martensite start temperature could be attributed to a decrease in volume fraction of precipitates and dislocation density.

Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1988
Author(s):  
Tibor Kvackaj ◽  
Jana Bidulská ◽  
Róbert Bidulský

This review paper concerns the development of the chemical compositions and controlled processes of rolling and cooling steels to increase their mechanical properties and reduce weight and production costs. The paper analyzes the basic differences among high-strength steel (HSS), advanced high-strength steel (AHSS) and ultra-high-strength steel (UHSS) depending on differences in their final microstructural components, chemical composition, alloying elements and strengthening contributions to determine strength and mechanical properties. HSS is characterized by a final single-phase structure with reduced perlite content, while AHSS has a final structure of two-phase to multiphase. UHSS is characterized by a single-phase or multiphase structure. The yield strength of the steels have the following value intervals: HSS, 180–550 MPa; AHSS, 260–900 MPa; UHSS, 600–960 MPa. In addition to strength properties, the ductility of these steel grades is also an important parameter. AHSS steel has the best ductility, followed by HSS and UHSS. Within the HSS steel group, high-strength low-alloy (HSLA) steel represents a special subgroup characterized by the use of microalloying elements for special strength and plastic properties. An important parameter determining the strength properties of these steels is the grain-size diameter of the final structure, which depends on the processing conditions of the previous austenitic structure. The influence of reheating temperatures (TReh) and the holding time at the reheating temperature (tReh) of C–Mn–Nb–V HSLA steel was investigated in detail. Mathematical equations describing changes in the diameter of austenite grain size (dγ), depending on reheating temperature and holding time, were derived by the authors. The coordinates of the point where normal grain growth turned abnormal was determined. These coordinates for testing steel are the reheating conditions TReh = 1060 °C, tReh = 1800 s at the diameter of austenite grain size dγ = 100 μm.


2013 ◽  
Vol 16 (1) ◽  
pp. 103-111 ◽  
Author(s):  
Silvia Barella ◽  
Andrea Gruttadauria ◽  
Carlo Mapelli ◽  
Davide Mombelli ◽  
Claudia Lisiane Fanezi ◽  
...  

2008 ◽  
Vol 58 (2) ◽  
pp. 134-137 ◽  
Author(s):  
A. García-Junceda ◽  
C. Capdevila ◽  
F.G. Caballero ◽  
C. García de Andrés

2020 ◽  
Vol 299 ◽  
pp. 482-486
Author(s):  
Mikhail V. Maisuradze ◽  
Maksim A. Ryzhkov

The high strength silicon steel HY-TUF, applied for manufacturing of the heavy loaded aerospace and engineering parts, was investigated. The effect of the heating temperature in the range 900...1000 °C on the austenite grain size was studied. The steel under consideration had a significant scatter of the austenite grain size. The most intensive growth of the austenite grains was observed in the temperature range 975...1000 °C.


2014 ◽  
Vol 922 ◽  
pp. 316-321 ◽  
Author(s):  
Antti J. Kaijalainen ◽  
Sakari Pallaspuro ◽  
David A. Porter

The direct quenching of low-carbon steel has been shown to be an effective way of producing ultra-high-strength, tough structural steels in the as-quenched state without tempering. However, in the present study, the influence of tempering at 500 °C has been studied in order to evaluate the possibilities of widening the range of strengths that can be produced from a single base composition. The chosen composition was 0.1C-0.2Si-1.1Mn-0.15Mo-0.03Ti-0.002B. In order to compare direct quenching with conventional quenching, two pre-quench austenite states were studied: a thermomechanically rolled, non-recrystallized, pancaked austenite grain structure and a recrystallized, equiaxed grain structure. Quenched and quenched-and-tempered microstructures were studied using FESEM and FESEM-EBSD. The as-quenched microstructures of the reheated and quenched and direct quenched specimens were fully martensitic and martensitic-bainitic, respectively. In both cases, tempering made the needle-shaped auto-tempered carbides of the as-quenched materials more spherical. In the case of the direct quenched (DQ) material, tempering led to a notable increase in the size of the grain boundary carbides. Prior austenite grain size and effective grain size after quenching were larger in the case of reheated and quenched material (RQ). Tempering had no effect on effective grain size. The crystallographic texture of the DQ material showed strong {112}<131> and {554}<225> components. The RQ material also contained the same components, but it also contained an intense {110}<110> and {011}<100> components. The effects of these microstructural changes on tensile, impact toughness and fracture toughness are described in part II.


2011 ◽  
Vol 66-68 ◽  
pp. 1797-1801
Author(s):  
Zhi Xia Qiao ◽  
Dan Tian Zhang ◽  
Yong Chang Liu ◽  
Ze Sheng Yan

The effect of austenization treatment temperature on the martensitic transformation in the 30CrNi3MoV ultra-high-strength steel was investigated by means of dilatometric measurements and microstructural observations. The results showed that the coarsening temperature of austenite grains in the 30CrNi3MoV steel is raised to about 1000°C due to the inhibition to the migration of austenite grain boundaries, not only by the fine and disperse vanadium carbides, but also by the solute atoms adsorbed near the boundaries. The martensite obtained in 30CrNi3MoV samples with different austenization temperatures varied in the structural constituent, as well as in the size. The martensite microstructures obtained in the samples austenized at relatively low temperatures were composed of both lath martensite and acicular martensite and they are small in size. Yet the microstructures in the 30CrNi3MoV samples with relatively high austenization temperatures were occupied mostly by coarse lath martensite. For the 30CrNi3MoV steel, the austenization heating temperature should be kept below 1000°C in order to achieve the optimum mechanical property.


Sign in / Sign up

Export Citation Format

Share Document