Effect of Loading Amount of Glucose Precursor on Mesoporous Carbon Surface Area for Supercapacitor Electrode Application

2016 ◽  
Vol 857 ◽  
pp. 101-105
Author(s):  
Farinaa Md Jamil ◽  
Mohd Ali Sulaiman ◽  
Suhaina Mohd Ibrahim ◽  
Abdul Kadir Masrom ◽  
Muhd Zu Azhan Yahya

Effect of glucose loading on the synthesis mesoporous carbon had been studied using hard template method where mesoporous silica SBA-15 was used as a template. To obtain a large pore of mesoporous carbon sample, a large pore of silica template was used. A series of mesoporous carbon sample was synthesized by loading different amounts of glucose (2.5g, 5.0g and 10.0g) as a carbon precursor to ensure that the template was fully impregnated with precursor. After treatment process, the surface area of carbon samples were measured with Brunauer-Emmett-Teller (BET) analysis and it shows that higher amount of glucose gives higher surface area due to the large pore of the template used. The samples then were tested with cyclic voltammetry technique at different scan rates (10, 20, 30 and 50 mVs-1) in 6M KOH electrolyte. It reveals that higher surface area samples show a higher specific capacitance with 119 F/g at slow scan rate 10 mVs-1.

Author(s):  
Di Wen ◽  
Zhou-wen Fang ◽  
Heng He ◽  
Chao Zhang ◽  
Xiang-li Long

Abstract2-nitro-4-methylsulfonylbenzoic acid (NMSBA) can be produced by oxidizing 2-nitro-4-methylsulfonyltoluene (NMST) with air catalyzed by Co/Mn/Br and phosphotungstic acid(HPW) loaded on activated carbon. This paper reports that the catalytic ability of the HPW@C catalyst in the oxidation of NMST to NMSBA can be improved by treating the activated carbon with ZnCl2solution. The best modification condition with ZnCl2solution is impregnating the carbon sample in 0.1 mol/L solution for 6 h followed by calcination at 600 °C for 4 h. The increase of the surface area and the acidic groups on the carbon surface enhances the catalytic ability of the HPW@C catalyst. The mesopores play an important role in the catalytic oxidation of NMST to NMSBA.


2016 ◽  
Vol 1133 ◽  
pp. 3-7 ◽  
Author(s):  
Farinaa Md Jamil ◽  
Mohd Ali Sulaiman ◽  
Suhaina Mohd Ibrahim ◽  
Abdul Kadir Masrom ◽  
Muhd Zu Azhan Yahya

A series of mesoporous carbon sample had been synthesized by using a modification of template silica, SBA-15. Sucrose was added into a large pore size of SBA-15 by using incipient wetness impregnation method. A proper carbonization and removal silica process had been done to produce large pore size of mesoporous carbon. Two electrode cells were prepared by coating mesoporous carbon into stainless steel mesh as a supercapacitor electrode. A few of electrolyte concentration also had been investigated by cyclic voltammetry using a various concentration of KOH in the range 1-12 M. It shows that 6M KOH gives a better performance of EDLC.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jeongpil Kim ◽  
Jeong-Hyun Eum ◽  
Junhyeok Kang ◽  
Ohchan Kwon ◽  
Hansung Kim ◽  
...  

AbstractHerein, we introduce a simple method to prepare hierarchical graphene with a tunable pore structure by activating graphene oxide (GO) with a two-step thermal annealing process. First, GO was treated at 600 °C by rapid thermal annealing in air, followed by subsequent thermal annealing in N2. The prepared graphene powder comprised abundant slit nanopores and micropores, showing a large specific surface area of 653.2 m2/g with a microporous surface area of 367.2 m2/g under optimized conditions. The pore structure was easily tunable by controlling the oxidation degree of GO and by the second annealing process. When the graphene powder was used as the supercapacitor electrode, a specific capacitance of 372.1 F/g was achieved at 0.5 A/g in 1 M H2SO4 electrolyte, which is a significantly enhanced value compared to that obtained using activated carbon and commercial reduced GO. The performance of the supercapacitor was highly stable, showing 103.8% retention of specific capacitance after 10,000 cycles at 10 A/g. The influence of pore structure on the supercapacitor performance was systematically investigated by varying the ratio of micro- and external surface areas of graphene.


Sign in / Sign up

Export Citation Format

Share Document