The Theoretical Investigation on Critical Buckling Stress of Graphene Nanosheets

2016 ◽  
Vol 859 ◽  
pp. 79-84
Author(s):  
Li Jun Zhou ◽  
Jian Gao Guo ◽  
Bao Long Li

The elastic buckling behaviors of graphene nanosheets are investigated via molecular structural mechanics based finite element method. The size-and chirality-dependent critical buckling stresses of monolayer and bilayer graphene nanosheets are calculated for different geometrical dimensions and boundary constraints, respectively. By analogy with classical buckling theory of elastic plate, the analytical expressions of critical buckling stress are derived for the graphene nanosheets with different boundary constraints, and the comparisons of analytical results with the counterparts obtained by molecular structural mechanics simulation show a good consistency.

2014 ◽  
Vol 636 ◽  
pp. 11-14 ◽  
Author(s):  
Bao Long Li ◽  
Li Jun Zhou ◽  
Jian Gao Guo

Molecular structural mechanics based finite element method has been applied to study the effects of two types of Stone-Wales (SW) defects and vacancy defect on elastic buckling properties of single-layered graphene sheets (SLGSs). The defect effect factors of critical buckling stresses are calculated for the defective SLGSs with different chirality and geometrical dimensions. It is proved that defect effect factors are size-dependent and chirality-dependent. The results show that the vacancy defects will always weaken the SLGSs’ stability, and two types of SW defects have different effects on zigzag and armchair SLGSs. What’s more, the positions of defects also have remarkable influence on the critical buckling stress of SLGSs.


2019 ◽  
Vol 33 (12) ◽  
pp. 1629-1651 ◽  
Author(s):  
George SE Bikakis ◽  
Costas D Kalfountzos ◽  
Efstathios E Theotokoglou

In this article, the elastic buckling response of rectangular simply supported and clamped fiber-metal laminates (FMLs) subjected to uniaxial compressive loading is investigated using the finite element method and eigenvalue buckling analysis. Using validated finite element method (FEM) models, the buckling coefficient-aspect ratio diagrams and the mode shapes of nine GLARE grades are obtained and studied along with the diagrams and the mode shapes of three unidirectional glass-epoxy composites and monolithic 2024-T3 aluminum. It is found that the critical average buckling stress and the buckling load of the materials increases for increasing metal volume fraction, when the plate aspect ratio is greater than 1.5. The rule of mixtures is evaluated and found to be a simple method to estimate approximately the average critical buckling stress of the GLARE plates. An approximate formula is derived for the estimation of the critical buckling coefficient of the GLARE plates using the buckling coefficients of their constituents. The applicability of the results to thermoplastic-based FMLs is discussed.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 780
Author(s):  
Angelo Marcello Tarantino ◽  
Carmelo Majorana ◽  
Raimondo Luciano ◽  
Michele Bacciocchi

The current Special Issue entitled “Advances in Structural Mechanics Modeled with FEM” aims to collect several numerical investigations and analyses focused on the use of the Finite Element Method (FEM) [...]


2011 ◽  
Vol 2-3 ◽  
pp. 1018-1020
Author(s):  
De Chen Zhang ◽  
Yan Ping Sun

Finite element method and structural mechanics method are used to study the blast furnace shell modal analysis and the natural frequencies and mode shapes have been calculated. The two methods were compared and validated , and the results provide a theoretical foundation for the anti-vibration capabilities design of blast furnace shell in the future .


2007 ◽  
pp. S115-S121
Author(s):  
J Záhora ◽  
A Bezrouk ◽  
J Hanuš

The aim of this study was to analyze the possibilities of various types of stent modeling and to develop some new models. A brief survey of basic properties of stents and a list of basic designs of stents is presented. Two approaches to stent modeling were identified. Structural mechanics is the theoretical background of our analytical model of a spiral stent. The finite element method was also used. The measurement equipment for model evaluation was developed.


2021 ◽  
Vol 9 (2) ◽  
pp. 56-60
Author(s):  
Mikhail Turko

The article discusses the methodology for calculating corrugated metal structures used as culverts based on the semi-analytical finite element method. The calculation is carried out according to a non-deformable scheme using the load dependences obtained on the basis of the structural mechanics of bulk solids. Significant differences in the nature of the stress-strain state of corrugated structures in comparison with smooth shells is revealed.


Sign in / Sign up

Export Citation Format

Share Document