Mechanical Characterization of Beams on Tensionless Foundation Materials

2016 ◽  
Vol 867 ◽  
pp. 152-156
Author(s):  
Xiao Liang Chen ◽  
Quan Hu Yang ◽  
Jian Ping Ding

The deformation and internal forces of beams on tensionless foundation materials were studied. The reaction force between the beam the foundation was fitted as a cubic polynomial about the deflection based on the experimental data, and the corresponding control equations of beams were derived by the finite difference method. Results show there are significant differences between tensionless and tensional foundation materials for the deformation and internal forces of beams. The difference is varying with the length of beams. Both the relative errors of the maximum of deflection and slope can be over 20%, and the relative errors of the maximum of shearing force and bending moment are smaller comparatively, so the tensionless effect of foundation materials can not be neglected for the stiffness verification and the strength verification of beams.

2016 ◽  
Vol 867 ◽  
pp. 147-151
Author(s):  
Xiao Liang Chen ◽  
Zuan Tian ◽  
Jian Ping Ding

The deformation and internal forces of beams on non-linear elastic foundation materials were studied. The reaction force between the beam and the foundation was fitted as a cubic polynomial about the deflection of beams by experimental data, and the corresponding control equations were derived by the finite difference method. MATLAB program with the Newton iteration method was used to obtain numerical results. Results of the numerical example show the deformation and internal force of short non-linear and linear elastic Winkler beams are same, but the relative errors can reach 10%-20% for moderate and long beams, so the non-linear foundation effect on the settlement of beams should be considered in engineering; the relative errors of the deformation and internal force between moderate non-linear and linear elastic Winkler beams vary with the length of beams, but keep invariant for long beams.


2020 ◽  
pp. 002199832094893
Author(s):  
Gayatri Vineela Marrivada ◽  
Phaneendra Kiran Chaganti ◽  
Ravindran Sujith

The aim of this research work is to study the mechanical behaviour of dry triaxially braided glass fibre sleeves and its composites experimentally and analytically. The braided glass fibre sleeves for three angles 30°, 45° and 60° were fabricated on a modified maypole vertical braider following a regular braid architecture. Tensile, flexural, short beam shear and impact tests were performed to evaluate the mechanical properties of the composites. A numerical model was developed, which can be used to find the elastic properties and mechanical strength values of the dry braided fabric and its composites. It was observed that the tensile, flexural and interlaminar properties of 30° specimens were more compared to 45° and 60°. The difference between the estimated and experimental values were found to be an average of 8% for tensile moduli and 24% for the tensile strength.


2011 ◽  
Vol 243-249 ◽  
pp. 2679-2683
Author(s):  
Yong Mou Zhang ◽  
Min Yang ◽  
Qiang Gang Yan

The method of composite stiffness principle and biparameter for laterally loaded pile was used in this paper to calculate the amplitude of deflection and rotation of pile on the ground when the vibration frequency of dynamic load is equal to or close to the natural frequency of pile, i.e. when the pile is in the state of resonance. And the amplitude of the maximum bending moment and its location was also calculated. Then the finite difference method which is simple in principle and easy to program was used to calculate the displacement, soil side resistance and internal forces of pile under horizontal dynamic load. By choosing reasonable parameters, rotation, displacement, and the maximum bending moment of hollow concrete pile and solid pile under the same dynamic loads at pile top in the same geological conditions were calculated respectively. On this basis, the performance differences between hollow pile and solid pile were analyzed. Some advantages of hollow pile were obtained. This research provides a theoretical guidance for the using of hollow pile in engineering.


Author(s):  
Fawzan Galib Abdul Karim Bawahab ◽  
Elvan Yuniarti ◽  
Edi Kurniawan

Abstrak. Pada penelitian ini, telah dilakukan analisa karakterisasi pada teknologi Direct Sequence Spread Spectrum dan Frequency Hopping Spread Spectrum, sebagai salah satu teknik multiple-access pada sistem komunikasi. Karakterisasi dilakukan untuk mencari bagaimana cara meningkatkan keoptimalan kedua sistem tersebut, dalam mengatasi masalah interferensi dengan sistem dan channel yang sama. Dan juga untuk menentukan veriabel apa yang mempengaruhi keoptimalan kedua sistem tersebut. Karakterisasi dilakukan dengan menentukan variabel-variabel yang mempengaruhi keoptimalan keduanya. Hasil dari karakterisasi, diketahui variabel-variabel yang mempengaruhi kemampuan sistem DSSS yaitu nilai frekuensi spreading (). Sedangkan untuk sistem FHSS yaitu nilai frekuensi spreading ( dan ) dan selisih antara frekuensi hopping data dengan frekuensi hopping interferensi . Kata Kunci: BER, DSSS, FHSS, Interference, Spread spectrum. Abstract. In this study, characterization of Direct Sequence Spread Spectrum and Frequency Hopping Spread Spectrum technologies have been done, as one of the multiple-access techniques in communication systems. Characterization is done to find out how to improve the ability of the two systems, in solving interference problems with the same system and channel. And also to determine what veriabel affects the ability of the two systems. Characterization is done by determining the variables that affect the ability of both. The results of the characterization, known variables that affect the ability of the DSSS system are the spreading frequency value (). As for the FHSS system, the spreading frequency value ( and ) and the difference between frequency hopping data with frequency hopping interference .


2020 ◽  
Author(s):  
Wallace Derricotte ◽  
Huiet Joseph

The mechanism of isomerization of hydroxyacetone to 2-hydroxypropanal is studied within the framework of reaction force analysis at the M06-2X/6-311++G(d,p) level of theory. Three unique pathways are considered: (i) a step-wise mechanism that proceeds through formation of the Z-isomer of their shared enediol intermediate, (ii) a step-wise mechanism that forms the E-isomer of the enediol, and (iii) a concerted pathway that bypasses the enediol intermediate. Energy calculations show that the concerted pathway has the lowest activation energy barrier at 45.7 kcal mol<sup>-1</sup>. The reaction force, chemical potential, and reaction electronic flux are calculated for each reaction to characterize electronic changes throughout the mechanism. The reaction force constant is calculated in order to investigate the synchronous/asynchronous nature of the concerted intramolecular proton transfers involved. Additional characterization of synchronicity is provided by calculating the bond fragility spectrum for each mechanism.


2018 ◽  
Author(s):  
Devon Jakob ◽  
Le Wang ◽  
Haomin Wang ◽  
Xiaoji Xu

<p>In situ measurements of the chemical compositions and mechanical properties of kerogen help understand the formation, transformation, and utilization of organic matter in the oil shale at the nanoscale. However, the optical diffraction limit prevents attainment of nanoscale resolution using conventional spectroscopy and microscopy. Here, we utilize peak force infrared (PFIR) microscopy for multimodal characterization of kerogen in oil shale. The PFIR provides correlative infrared imaging, mechanical mapping, and broadband infrared spectroscopy capability with 6 nm spatial resolution. We observed nanoscale heterogeneity in the chemical composition, aromaticity, and maturity of the kerogens from oil shales from Eagle Ford shale play in Texas. The kerogen aromaticity positively correlates with the local mechanical moduli of the surrounding inorganic matrix, manifesting the Le Chatelier’s principle. In situ spectro-mechanical characterization of oil shale will yield valuable insight for geochemical and geomechanical modeling on the origin and transformation of kerogen in the oil shale.</p>


2017 ◽  
Vol 5 (3) ◽  
pp. 8
Author(s):  
KUMAR DINESH ◽  
KAUR ARSHDEEP ◽  
AGGARWAL YUGAM KUMAR ◽  
UNIYAL PIYUSH ◽  
KUMAR NAVIN ◽  
...  

Author(s):  
Alexandre Luiz Pereira ◽  
Rafael Oliveira Santos ◽  
DOINA BANEA ◽  
Álisson Lemos

Sign in / Sign up

Export Citation Format

Share Document