Effect of Precipitate on Microstructure Evolution and Hardness of Al-Cu Alloy during Torsion Deformation

2016 ◽  
Vol 872 ◽  
pp. 33-37 ◽  
Author(s):  
Sunisa Khamsuk ◽  
Nokeun Park ◽  
Daisuke Terada ◽  
Nobuhiro Tsuji

The effect of precipitate on microstructure evolution and hardness of Al-Cu alloy during torsion deformation has been investigated, by comparing the evolution of microstructure in aged Al-2wt.% Cu alloy with commercial purity aluminum (1100Al). The microstructure evolution is studied by Transmission Electron Microscopy and Electron Backscatter Diffraction, and hardness is measured using Vickers hardness measuring instrument. It is found that the presence of precipitate enhance the grain refinement and hardness of Al-Cu alloy. By applied equivalent strain of 3.26, the (sub) grain size of 86 nm is achieved. In contrast, the presence of precipitate is found to be inhibiting the development of high angle grain boundary.

2016 ◽  
Vol 879 ◽  
pp. 2261-2267 ◽  
Author(s):  
Xian Kun Ji ◽  
Jia Min Hu ◽  
Hui Zhang ◽  
Fu Lin Jiang ◽  
Ding Fa Fu

Repetitive continuous extrusion forming was employed as a continuous severe plastic deformation route and both Al-Fe-Cu alloy and Al-Mg-Si alloy were involved. Evolution of microstructures and properties during this process is investigated by optical microscope, electron-backscatter diffraction, transmission electron microscope, and tensile testing. The results show that in the Al-Fe-Cu alloy an obvious mechanical softening and grain refinement were observed, while in the Al-Mg-Si alloy it shows a slightly rising in strength and ductility as the extrusion passes increasing.


2009 ◽  
Vol 24 (3) ◽  
pp. 647-651 ◽  
Author(s):  
M. Rester ◽  
C. Motz ◽  
R. Pippan

Electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) analyses of small indentations in copper single crystals exhibit only slight changes of the crystal orientation in the surroundings of the imprints. Far-reaching dislocations might be the reason for these small misorientation changes. Using EBSD and TEM technique, this work makes an attempt to visualize the far-propagating dislocations by introducing a twin boundary in the vicinity of small indentations. Because dislocations piled up at the twin boundary produce a misorientation gradient, the otherwise far-propagating dislocations can be detected.


2006 ◽  
Vol 70 (4) ◽  
pp. 373-382 ◽  
Author(s):  
G. Nolze ◽  
G. Wagner ◽  
R. Saliwan Neumann ◽  
R. Skála ◽  
V. Geist

AbstractThe crystallographic orientation of carlsbergite (CrN) in the north Chile meteorite (hexahedrite) was investigated using electron backscatter diffraction and transmission electron microscopy. These studies examined the CrN crystals in the rhabdites (idiomorphic schreibersite) and in kamacite. It was found that the CrN crystals embedded in rhabdite show a number of different orientation relationships with the host crystals. These orientations can be explained based on the lattice dimensions of both coexisting crystalline materials. It was also found that both carlsbergite and kamacite are characterized by a high dislocation density (≥ l09 cm-2) while rhabdite is free of dislocations. It is supposed that in spite of the deformed metallic matrix, a general connection between the orientation relation of all the phases involved exists.


2011 ◽  
Vol 702-703 ◽  
pp. 574-577 ◽  
Author(s):  
Daniel Goran ◽  
G. Ji ◽  
M. N. Avettand-Fènoël ◽  
R. Taillard

Texture and microstructure of FSW joined Al and Cu sheets were investigated by means of electron backscatter diffraction (EBSD) technique. The analysis has revealed a strong texture evolution on both sides of the weld interface as well as a very complex microstructure. Grains were found to be fully recrystallized on both sides of the weld and with different average diameters at different specific zones of the weld.


MRS Advances ◽  
2016 ◽  
Vol 1 (43) ◽  
pp. 2947-2952
Author(s):  
L. Chen ◽  
Z.-H. Lu ◽  
T.-M. Lu ◽  
I. Bhat ◽  
S.B. Zhang ◽  
...  

ABSTRACTEpitaxial Ge films are useful as a substrate for high-efficiency solar cell applications. It is possible to grow epitaxial Ge films on low cost, cube textured Ni(001) sheets using CaF2(001) as a buffer layer. Transmission electron microscopy (TEM) analysis indicates that the CaF2(001) lattice has a 45o in-plane rotation relative to the Ni(001) lattice. The in-plane epitaxy relationships are CaF2[110]//Ni[100] and CaF2[$\bar 1$10]//Ni[010]. Energy dispersive spectroscopy (EDS) shows a sharp interface between Ge/CaF2 as well as between CaF2/Ni. Electron backscatter diffraction (EBSD) shows that the Ge(001) film has a large grain size (∼50 μm) with small angle grain boundaries (< 8o). The epitaxial Ge thin film has the potential to be used as a substrate to grow high quality III-V and II-VI semiconductors for optoelectronic applications.


1999 ◽  
Vol 564 ◽  
Author(s):  
K. Barmak ◽  
G. A. Lucadamo ◽  
C. Cabral ◽  
C. Lavoie ◽  
J. M. E. Harper

AbstractWe have found the dissociation behavior of immiscible Cu-alloy thin films to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. The motivation for these studies was to use the energy released by the dissociation of an immiscible alloy, in addition to other driving forces commonly found in thin films and lines, to promote grain growth and texture evolution. In this work, the dissociation behavior of eight dilute (3.3 ± 0.5 at% solute) binary Cu-systems was investigated, with five alloying elements selected from group VB and VIB, two from group VillA, and one from group 1B. These alloying elements are respectively V, Nb, Ta, Cr, Mo, Fe, Ru and Ag. Several experimental techniques, including in situ resistance and stress measurements as well as in situ synchrotron x-ray diffraction, were used to follow the progress of solute precipitation in approximately 500 nm thick films. In addition, transmission electron microscopy was used to investigate the evolution of microstructure of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure and texture often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900°C. However, in most cases, substantial reduction in resistivity of the films took place at temperatures of interest to metallization schemes, namely below 400°C.


2021 ◽  
Author(s):  
Olga Ageeva ◽  
Ge Bian ◽  
Gerlinde Habler ◽  
Rainer Abart

&lt;p&gt;Magnetite micro-inclusions in silicate minerals are important carriers of the remanent magnetization of rocks. Their shape orientation relationships (SOR) and crystallographic orientation relationships (COR) to the host crystal are of interest in the context of the bulk magnetic properties of the inclusion-host assemblage. We investigated the SOR and COR of magnetite (MT) micro-inclusions in plagioclase (PL) from oceanic gabbro using correlated optical microscopy, scanning electron microscopy, Electron backscatter diffraction analysis and Transmission electron microscopy.&lt;/p&gt;&lt;p&gt;In the mm-sized PL crystals of the investigated gabbros MT is present as equant, needle- and lath-shaped (sub)micrometer sized inclusions. More than 95% of the needle-shaped inclusions show SOR and specific COR to the plagioclase host. Most of the needles are elongated perpendicular to one of the MT{111} planes, which is aligned parallel to one of the (112), (1-12), (-312), (-3-12), (150), (1-50) or (100) planes of plagioclase. These inclusions are classified as &amp;#8220;plane-normal type&amp;#8221;. The needle elongation parallel to MT&lt;111&gt;, which is the easy direction of magnetization, ensures high magnetic susceptibility of these inclusions. The underlying formation mechanism is related to the parallel alignment of oxygen layers with similar lattice spacing across the MT-PL interfaces that are parallel to the elongation direction [1].&lt;/p&gt;&lt;p&gt;Apart from the SOR and the alignment of a MT{111} with one of the PL low index planes, the MT crystals rotate about the needle elongation direction. The rotation angles are statistically distributed with several maxima representing specific orientation relationships. In some cases one of the MT&lt;001&gt; axes is aligned with PL[14 10 7] or PL[-14 10 -7], which ensures that FeO&lt;sub&gt;6 &lt;/sub&gt;octahedra of MT well fit into channels // [001] of PL, which are formed by six membered rings of SiO&lt;sub&gt;4&lt;/sub&gt; and AlO&lt;sub&gt;4&lt;/sub&gt; tetrahedra [2]. This COR is referred to as the &amp;#8220;nucleation orientation&amp;#8221; of magnetite with respect to PL. There are several other possibilities to fit FeO&lt;sub&gt;6&lt;/sub&gt; octahedra into the [001] channels of PL, but the alignment stated above allows for the additional parallel alignment of one of the MT{111} with one of the above mentioned low index lattice planes of PL. MT crystals with one of these nucleation orientations can undergo directional growth to develop laths and needles. MT crystals with other nucleation orientations that do not allow for the parallel alignment of MT{111} with the above mentioned PL lattice planes, do not significantly grow and form the equant inclusions.&lt;/p&gt;&lt;p&gt;For some needles one or more of the MT{011} planes that are parallel to the needle elongation direction, are aligned with low-index planes of plagioclase such as PL (112), PL(150), PL(1-50) etc., and form MT facets. This situation corresponds to achievement of the best possible match between the two crystal lattices. This can either be generated during primary growth or during re-equilibration of the micro-inclusions and the plagioclase host.&lt;/p&gt;&lt;p&gt;Funding by RFBR project 18-55-14003 and Austrian Science fund (FWF): I 3998-N29 is acknowledged.&lt;/p&gt;&lt;p&gt;Reference&lt;/p&gt;&lt;p&gt;[1] Ageeva et al (2020) Contrib. Mineral. Petrol. 175(10), 1-16.&lt;/p&gt;&lt;p&gt;[2] Wenk et al (2011) Am. Min. 96, 1316-1324&lt;/p&gt;


2021 ◽  
Vol 1027 ◽  
pp. 155-162
Author(s):  
Qiang Wang

In order to study the mechanism of the fatigue strengthening using laser shot peening in GH4169 alloy, micro-structural and nanoscale mechanical twins (MT) at different depth below the top surface subjected to laser shot peening processing (LSP) were investigated by means of electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM) observations. In terms of the experimental observations and analyses, the formation of refined grains and nanoscale MT mechanism at the near surface of GH4169 alloy as a function of LSP treament can be summarized as follows: (i) two direction low density of MTs divide the initial coarse grains into submicron rhombic blocks; (ii) high density of MTs aligned in two directions subdivide the submicron rhombic blocks into nanoscale rhombic MT blocks; (iii) the third direction MT further refine the nanoscale rhombic MT blocks into nanoscale triangular MT blocks; (iv) some of subdivided blocks evolve into refined grains. An ultra-high strain rate induced by ultra-short laser pulse plays a key role in the formation of refined grains and nanoscale MT during plastic deformation of GH4169 alloy subjected to LSP treatment.


Sign in / Sign up

Export Citation Format

Share Document