Synthesis and Photophysical Properties of New Three-Coordinate N-Heterocyclic Carbene Copper Complex

2016 ◽  
Vol 878 ◽  
pp. 18-21
Author(s):  
Shao Bo Liu ◽  
Cheng Yi ◽  
Hong Ying Xia ◽  
Feng Zhao

A three-coordinateopper (I) complex supported by N-heterocyclic carbene (NHC) ligand and bis [2-(diphenylphosphino) phenyl] ether (POP) ligand were successfully reported and characterized. The corresponding photophysical properties were investigated using UV-vis and emission spectrometry. The lowest-energy absorption band at 343 nm was assigned to metal-to-ligand charge transfer (MLCT) transtion. The emission maximum located at 470 nm upon excitation at 290 nm in PMMA films at room temperature originates from the typical 3MLCT excited state.

2018 ◽  
Vol 20 (38) ◽  
pp. 25096-25104 ◽  
Author(s):  
Joseph C. Deaton ◽  
Arnab Chakraborty ◽  
Rafal Czerwieniec ◽  
Hartmut Yersin ◽  
Felix N. Castellano

A dinuclear Pt(ii) complexes exhibits an unusually large zero field splitting in its metal–metal-to-ligand charge transfer triplet excited state.


2001 ◽  
Vol 3 (3) ◽  
pp. 143-164 ◽  
Author(s):  
Melina Kayoko Itokazu ◽  
André Sarto Polo ◽  
Neyde Yukie Murakami Iha

The excited state reactivity and photophysical properties offac-[Re(CO)3(phen)(L)]PF6(phen = 1,10-phenanthroline, L =trans- orcis-1,2-bis(4-pyridyl)ethylene, bpe) in PMMA (poly(methyl methacrylate)) films have been investigated and compared with those in acetonitrile solution.313 or 365 nm irradiation of the rhenium complex in PMMA leads to UV-vis spectral changes due to thetrans→cisisomerization of the coordinated bpe ligand. Thefac-[Re(CO)3(phen)(cis-bpe)]+product presents a markedly enhanced luminescence due to a lower lying metal-to-ligand charge transfer (MLCT) excited state in thecisisomer. This emitting property can be conveniently applied as a probe or sensor.Thecisis omer ratio in the photostationary state (PSS) is substantially smaller in solid films than in solution. The photochemical behavior of the freetrans-1,2-bis(4-pyridyl)ethylene in PMMA is also reported to establish comparisons with the investigation carried out in acetonitrile solution as well as with the behavior of the coordinated ligand.


1997 ◽  
Vol 488 ◽  
Author(s):  
Po King Ng ◽  
Wai Yue Ng ◽  
Xiong Gong ◽  
Wai Kin Chan

AbstractA series of conjugated polymers functionalized with different ruthenium polypyridine metal complexes were synthesized by the palladium catalyzed reaction. Two conjugated polymer systems have been studied: 1. poly(phenylenevinylene) with bis(2,2':6',2”-terpyridine) ruthenium (II) on the mainchain and 2. quinoxaline based polymers with tris(2,2'-bipyridine) ruthenium (II). The ruthenium polypyridine complexes exhibit a long-lived metal to ligand charge transfer excited state which can enhance the photosensitivity of the resulting polymers. Different physical properties such as the photoconductivity and charge mobility in these polymers are also studied.


2009 ◽  
Vol 87 (1) ◽  
pp. 254-263 ◽  
Author(s):  
Francesco Nastasi ◽  
Frédérique Loiseau ◽  
Sebastiano Campagna ◽  
Elaine A Medlycott ◽  
Marie-Pierre Santoni ◽  
...  

A family made of four bis(pyridyl)triazine ligands with appended aryl rings, including three fused aromatic rings, have been synthesized, and their corresponding homoleptic Ru(II) and Zn(II) complexes have been prepared and characterized by several means. The free ligands 2,4-di(2-pyridyl)-6-phenyl-1,3,5-triazine (L1); 2,4-di(2-pyridyl)-6-(1-naphthyl)-1,3,5-triazine (L2); 2,4-di(2-pyridyl)-6-(9-phenanthryl)-1,3,5-triazine (L3); and 2,4-di(2-pyridyl)-6-(1-pyrenyl)-1,3,5-triazine (L4) were formed in triazine ring-forming reactions from the reactions of the cyano-functionalized aromatic rings with LiNMe2 followed by the addition of 2 equiv. of 2-cyanopyridine. The metal complexes examined in this study are the homoleptic Ru(II) complexes Ru(L1)22+ (2a), Ru(L2)22+ (2b), Ru(L3)22+ (2c), and Ru(L4)22+ (2d) and Zn(II) complexes Zn(L1)22+ (3a), Zn(L2)22+ (3b), Zn(L3)22+ (3c), and Zn(L4)22+ (3d). Also, crystallographic data for the free ligands and Zn(II) and Ru(II) complexes have been obtained in some cases. The redox behaviour and absorption spectra of all the species have been investigated, together with the luminescence properties of the free ligands at room temperature in fluid solution and of the Ru(II) complexes both at room temperature in fluid solution and at 77 K in rigid matrix. The redox data indicate that the free ligands are reduced twice at relatively mild potentials (< –2.30 V vs. SCE), with the first reduction almost independent of the nature of the substituted aryl group. The UV absorption spectra of all the compounds are dominated by intense spin-allowed π–π* transitions mainly centered on the bis(pyridyl)triazine moiety; however, in L2–L4, moderately intense intraligand charge-transfer (ILCT) bands are also present. Such bands are red-shifted in the Zn(II) compounds, while they are obscured in the Ru(II) species by the more intense spin-allowed metal-to-ligand charge-transfer (MLCT) bands. The free ligands exhibit interesting emission properties, ranging from fluorescence from π–π* states to excimeric (in L4) and ILCT (in L2 and L3) emission. In the Ru(II) complexes, strong emission is found at 77 K from triplet MLCT states. For 2c and 2d, the emissive MLCT states are mixed with low-lying triplet ligand-centered states.Key words: triazine ligands, ruthenium complexes, zinc complexes, ILCT emission.


2011 ◽  
Vol 239-242 ◽  
pp. 2612-2615
Author(s):  
Jie Xiu Wang ◽  
Feng Zhao

Two related tricarbonyl rhenium complexes with the formula of [Re(CO)3(L)Cl], where L=4,5-diazafluoren-9-one (Dafo-Re) and 9-(phenylamino)-4,5-diazafluoren (PADF-Re) were successfully synthesized with the aim to explore the effect of the geometry of Dafo on Rhenium(I) coordination, and characterized by1H NMR. Photophysical behaviors are investigated by UV–vis absorption and Fluorescence spectra. The two complexes Dafo-Re and PADF-Re show metal-to-ligand charge transfer absorptions at ca.391nm, ca.394 nm and emissions at ca.492nm, ca.470nm, respectively.


2014 ◽  
Vol 92 (10) ◽  
pp. 996-1009 ◽  
Author(s):  
Shivnath Mazumder ◽  
Ryan A. Thomas ◽  
Richard L. Lord ◽  
H. Bernhard Schlegel ◽  
John F. Endicott

The complexes [Ru(NCCH3)4bpy]2+ and [Ru([14]aneS4)bpy]2+ ([14]aneS4 = 1,4,8,11-tetrathiacyclotetradecane, bpy = 2,2′-bipyridine) have similar absorption and emission spectra but the 77 K metal-to-ligand charge-transfer (MLCT) excited state emission lifetime of the latter is less than 0.3% that of the former. Density functional theory modeling of the lowest energy triplet excited states indicates that triplet metal centered (3MC) excited states are about 3500 cm−1 lower in energy than their 3MLCT excited states in both complexes. The differences in excited state lifetimes arise from a much larger coordination sphere distortion for [Ru(NCCH3)4bpy]2+ and the associated larger reorganizational barrier for intramolecular electron transfer. The smaller ruthenium ligand distortions of the [Ru([14]aneS4)bpy]2+ complex are apparently a consequence of stereochemical constraints imposed by the macrocyclic [14]aneS4 ligand, and the 3MC excited state calculated for the unconstrained [Ru(S(CH3)2)4bpy]2+ complex (S(CH3)2 = dimethyl sulfide) is distorted in a manner similar to that of [Ru(NCCH3)4bpy]2+. Despite the lower energy calculated for its 3MC than 3MLCT excited state, [Ru(NCCH3)4bpy]2+ emits strongly in 77 K glasses with an emission quantum yield of 0.47. The emission is biphasic with about a 1 μs lifetime for its dominant (86%) emission component. The 405 nm excitation used in these studies results in a significant amount of photodecomposition in the 77 K glasses. This is a temperature-dependent biphotonic process that most likely involves the bipyridine-radical anionic moiety of the 3MLCT excited state. A smaller than expected value found for the radiative rate constant is consistent with a lower energy 3MC than 3MLCT state.


RSC Advances ◽  
2016 ◽  
Vol 6 (25) ◽  
pp. 20507-20515 ◽  
Author(s):  
Fei Ma ◽  
Martin Jarenmark ◽  
Svante Hedström ◽  
Petter Persson ◽  
Ebbe Nordlander ◽  
...  

Ultrafast excited state dynamics of [Cr(CO)4(bpy)] upon metal-to-ligand charge-transfer (1MLCT) transition have been studied by pump-probe absorption spectroscopy and DFT calculation.


2012 ◽  
Vol 109 (38) ◽  
pp. 15132-15135 ◽  
Author(s):  
Akitaka Ito ◽  
David J. Stewart ◽  
Zhen Fang ◽  
M. Kyle Brennaman ◽  
Thomas J. Meyer

Distance-dependent energy transfer occurs from the Metal-to-Ligand Charge Transfer (MLCT) excited state to an anthracene-acrylate derivative (Acr-An) incorporated into the polymer network of a semirigid poly(ethyleneglycol)dimethacrylate monolith. Following excitation, to Acr-An triplet energy transfer occurs followed by long-range, Acr-3An—Acr-An → Acr-An—Acr-3An, energy migration. With methyl viologen dication (MV2+) added as a trap, Acr-3An + MV2+ → Acr-An+ + MV+ electron transfer results in sensitized electron transfer quenching over a distance of approximately 90 Å.


Sign in / Sign up

Export Citation Format

Share Document