Synthesis and Characterization of Si3N4 Nanopowder by RF Induction Thermal Plasma

2017 ◽  
Vol 898 ◽  
pp. 1597-1602 ◽  
Author(s):  
Xuan Zhao ◽  
Hai Yan Chen ◽  
Chen Yang Shu ◽  
Li Hua Dong ◽  
Yan Sheng Yin

Nano-Si3N4 has been synthesized by the thermal plasma with silicon tetrachloride (SiCl4) as the Si source, liquid ammonia (NH3) as the N source, and silane (SiH4) as the catalyst. And the prepared Nano-Si3N4was heat-treated atfour different temperatures of 1350°C, 1400°C, 1450°C, 1500°C. The as-prepared samples were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and fourier transform infrared spectroscopy (FTIR). The results showed that the particle size of the nano-Si3N4 powder was less than 100 nm and it was amorphous when the temperature below 1450°C. At 1500°C, the synthesized Si3N4 powder with the grain size of 10 nm was crystallized, and the α-phase Si3N4 reached more than 90%.

2009 ◽  
Vol 1178 ◽  
Author(s):  
Olivia Maria Berengue ◽  
Cleocir J. Dalmaschio ◽  
Tiago G. Conti ◽  
Adenilson J. Chiquito ◽  
Edson R. Leite

AbstractSn3O4 nanobelts were grown by a carbothermal evaporation process of SnO2 powders in association with the well known vapour-solid mechanism (VS). The nanobelts crystal structure was investigated by x-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), raman spectroscopy and field emission gun scanning electron microscopy (FEG-SEM). The structural and morphological characterization has confirmed the growth of single crystal nanobelts. The electrical characterization (current-voltage, temperature-dependent resistance curves) of individual Sn3O4 nanobelts was performed at different temperatures and light excitation. The experiments revealed a semiconductor – like character as evidenced by the resistance decreasing at high temperatures. The transport mechanism was identified as the variable range hopping.


2017 ◽  
Vol 899 ◽  
pp. 227-231 ◽  
Author(s):  
Patrícia Mendonça Pimentel ◽  
J.L.S. Dutra ◽  
A.C. Lima ◽  
J.H. Araújo ◽  
Osmar Bagnato ◽  
...  

The rare-earth orthoferrites (LnFeO3) are promising materials for various applications, such as chemical sensors, cathode for SOFC, catalysts, among others. In general, these oxides are synthesized at temperatures higher than 700 °C. In this work, nanocrystalline LaFe1-xAlxO3 (x=0, x=0.2) powders were synthesized by a method that uses gelatin as organic precursor and heat treated at 400, 600 and 800 °C. The structural and magnetic characterization of powders was carried out by X-ray diffraction (XRD) and vibrating sample magnetometry (VSM). Morphological analysis was performed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The XRD patterns revealed the formation of orthoferrites single phase since 400°C. The powders exhibited weak ferromagnetic behavior at room temperature where the values of saturation magnetization, remanence and coercivity varied with the doping and heat treatment temperature.


1995 ◽  
Vol 418 ◽  
Author(s):  
J. Forbes ◽  
J. Davis ◽  
C. Wong

AbstractThe detonation of explosives typically creates 100's of kbar pressures and 1000's K temperatures. These pressures and temperatures last for only a fraction of a microsecond as the products expand. Nucleation and growth of crystalline materials can occur under these conditions. Recovery of these materials is difficult but can occur in some circumstances. This paper describes the detonation synthesis facility, recovery of nano-size diamond, and plans to synthesize other nano-size materials by modifying the chemical composition of explosive compounds. The characterization of nano-size diamonds by transmission electron microscopy and electron diffraction, X-ray diffraction and Raman spectroscopy will also be reported.


2012 ◽  
Vol 174-177 ◽  
pp. 508-511
Author(s):  
Lin Lin Yang ◽  
Yong Gang Wang ◽  
Yu Jiang Wang ◽  
Xiao Feng Wang

BiFeO3 polyhedrons had been successfully synthesized via a hydrothermal method. The as-prepared products were characterized by power X-ray diffraction (XRD) pattern, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The possible mechanisms for the formation of BiFeO3 polyhedrons were discussed. Though comparison experiments, it was found that the kind of precursor played a key role on the morphology control of BiFeO3 crystals.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Cha Ping Liau ◽  
Mansor Bin Ahmad ◽  
Kamyar Shameli ◽  
Wan Md Zin Wan Yunus ◽  
Nor Azowa Ibrahim ◽  
...  

Polyhydroxybutyrate (PHB)/polycaprolactone (PCL)/stearate Mg-Al layered double hydroxide (LDH) nanocomposites were prepared via solution casting intercalation method. Coprecipitation method was used to prepare the anionic clay Mg-Al LDH from nitrate salt solution. Modification of nitrate anions by stearate anions between the LDH layers via ion exchange reaction. FTIR spectra showed the presence of carboxylic acid (COOH) group which indicates that stearate anions were successfully intercalated into the Mg-Al LDH. The formation of nanocomposites only involves physical interaction as there are no new functional groups or new bonding formed. X-ray diffraction (XRD) and transmission electron microscopy (TEM) indicated that the mixtures of nanocomposites are intercalated and exfoliated types. XRD results showed increasing of basal spacing from 8.66 to 32.97 Å in modified stearate Mg-Al LDH, and TEM results revealed that the stearate Mg-Al LDH layers are homogeneously distributed in the PHB/PCL polymer blends matrix. Enhancement in 300% elongation at break and 66% tensile strength in the presence of 1.0 wt % of the stearate Mg-Al LDH as compare with PHB/PCL blends. Scanning electron microscopy (SEM) proved that clay improves compatibility between polymer matrix and the best ratio 80PHB/20PCL/1stearate Mg-Al LDH surface is well dispersed and stretched before it breaks.


2000 ◽  
Vol 15 (10) ◽  
pp. 2076-2079
Author(s):  
Chika Nozaki ◽  
Takashi Yamada ◽  
Kenji Tabata ◽  
Eiji Suzuki

Synthesis of a rutile-type lead-substituted tin oxide with (110) face was investigated. The characterization was performed by x-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive x-ray spectroscopy, infrared spectroscopy, x-ray photoelectron spectroscopy, and Brunauer–Emmett–Teller surface area measurements. The homogeneous rutile-type lead-substituted tin oxide was obtained until 4.1 mol% of tin was substituted with lead. The surface of obtained oxide had a homogeneously lead-substituted (110) face.


2020 ◽  
Vol 32 (6) ◽  
pp. 1505-1510
Author(s):  
Ahmad Husain ◽  
Mohd Urooj Shariq ◽  
Anees Ahmad

In present study, the synthesis and characterization of a novel polypyrrole (PPy)/tin oxide (SnO2)/MWCNT nanocomposite along with pristine polypyrrole is reported. These materials have been studied for their structural and morphological properties by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) techniques. PPy/SnO2/MWCNT nanocomposite has been converted into a pellet-shaped sensor, and its ammonia sensing studies were carried out by calculating the variation in the DC electrical conductivity at different concentration of ammonia ranging from 10 to 1500 ppm. The sensing response of the sensor was determined at 1500, 1000, 500, 200, 100 and 10 ppm and found to be 70.4, 66.1, 62.2, 55.4, 50.8 and 39.7%, respectively The sensor showed a complete reversibility at lower concentrations along with excellent selectivity and stability. Finally, a sensing mechanism was also proposed involving polarons (charge carriers) of polypyrrole and lone pairs of ammonia molecules


1999 ◽  
Vol 14 (5) ◽  
pp. 1782-1790 ◽  
Author(s):  
X. L. Dong ◽  
Z. D. Zhang ◽  
S. R. Jin ◽  
W. M. Sun ◽  
X. G. Zhao ◽  
...  

Ultrafine Fe–Ni(C) particles of various compositions were prepared by arc discharge synthesis in a methane atmosphere. The particles were characterized by x-ray diffraction, transmission electron microscopy, energy disperse spectroscopy, chemical analysis, x-ray photoelectron spectroscopy, Mössbauer spectroscopy, and magnetization measurement. The carbon atoms solubilizing at interstitial sites in γ–(Fe, Ni, C) solution particles have the effects of forming austenite structure and changing microstructures as well as magnetic properties. A carbon layer covers the surface of Fe–Ni(C) particles to form the nanocapsules and protect them from oxidization. The mechanism of forming Fe–Ni(C) nanocapsules in the methane atmosphere was analyzed.


1996 ◽  
Vol 433 ◽  
Author(s):  
Jeong Soo Lee ◽  
Hyun JA Kwon ◽  
Young Woo Jeong ◽  
Hyun HA Kim ◽  
Kyu HO Park ◽  
...  

AbstractMicrostructures and interdiffusions of Pt/Ti/SiO2/Si and RuO2/SiO2/Si during annealing in O2 were investigated using x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The degree of oxidation and the interdiffusion of elements have remarkably increased with increasing temperature above 500 °C for the Pt/Ti/SiO2/Si case. The generation of Pt hillocks commenced at 500 °C. The Pt-silicide phase was also observed near the TiOx/SiO2 interface. The microstructural variations occurred to only a small amount for the RuO2/SiO2/Si case over the temperature range 300 – 700 °C. While there was no hillock formation, the RuO2 film surface was roughened by the thermal grooving phenomenon. A thin interlayer phase was found at the RuO2/SiO2 interface.


2005 ◽  
Vol 20 (9) ◽  
pp. 2480-2485 ◽  
Author(s):  
Kohei Kadono ◽  
Tatsuya Suetsugu ◽  
Takeshi Ohtani ◽  
Toshihiko Einishi ◽  
Takashi Tarumi ◽  
...  

Copper(I) chloride and bromide nanoparticle-dispersed glasses were prepared by means of a conventional copper staining. The staining was performed by the following process: copper stain was applied on the surfaces of Cl−- or Br−-ion-containing borosilicate glasses, and the glasses were heat-treated at 510 °C for various times. Typical exciton bands observed in the absorption spectra of the glasses after the heat treatment indicated that CuCl and CuBr particles were formed in the surface region of the glasses. The average sizes of the CuCl and CuBr particles in the glasses heat-treated for 48 h were estimated at 4.8 and 2.7 nm, respectively. The nanoparticles were also characterized by x-ray diffraction and transmission electron microscopy. Depth profiles of Cu and CuBr concentration in the glass heat-treated for 48 h were measured. Copper decreased in concentration monotonously with depth, reaching up to 60 μm, while the CuBr concentration had a maximum at about 25 μm in depth.


Sign in / Sign up

Export Citation Format

Share Document