Microstructural Aspects of TBC`s Deposited on Internal Combustion Engine Valve Materials

2017 ◽  
Vol 907 ◽  
pp. 151-156 ◽  
Author(s):  
Marius Panțuru ◽  
Daniela Chicet ◽  
Constantin Paulin ◽  
Ștefan Lupescu ◽  
Corneliu Munteanu

The discs of the intake or exhaust valves are vital organs of internal combustion engines, being subjected to extreme operating conditions, thermal, mechanical and chemical types. One of the goals of researches in this area is related to thermal insulation of the combustion chamber of internal combustion engines, which could enhance their performance in operation. In this article we analysed the microstructural aspects of some coatings obtained from powders with thermal barrier role on specific materials for internal combustion engines valves. There were used as substrate samples of low alloy steels with Si and high alloyed steels with Cr, Ni and Mn. Using the facility SPRAYWIZARD 9MCE for atmospheric plasma spraying, two types of thermal barrier coatings were produced, from powders based on zirconia and alumina. The samples were analyzed in terms of microstructure using the QUANTA 200 3D scanning electron microscope and the X`PERT PROMD diffractometer. Observations were made both on the longitudinal surface of the coating in order to evaluate it and on the cross-section to evaluate the substrate-coating interface, the influence of deposition temperatures on the substrate and aspect/microstructure on its depth. XRD analysis revealed a cubic structure of aluminum oxide, respectively zirconium oxide. The identified morphology is a specific "splat" one for the ceramic coatings. Surface appearance shows tiny pores and cracks specific to the spraying method. The resulted coatings present a significant compactness and adherence to the substrate, which recommends them for further thermal behaviour testing.

2013 ◽  
Author(s):  
Jorge Duarte Forero ◽  
German Amador Diaz ◽  
Fabio Blanco Castillo ◽  
Lesme Corredor Martinez ◽  
Ricardo Vasquez Padilla

In this paper, a mathematical model is performed in order to analyze the effect of the methane number (MN) on knock tendency when spark ignition internal combustion engine operate with gaseous fuels produced from different thermochemical processes. The model was validated with experimental data reported in literature and the results were satisfactory. A general correlation for estimating the autoignition time of gaseous fuels in function of cylinder temperature, and pressure, equivalence ratio and methane number of the fuel was carried out. Livengood and Wu correlation is used to predict autoignition in function of the crank angle. This criterium is a way to predict the autoignition tendency of a fuel/air mixture under engine conditions and consider the ignition delay. A chemical equilibrium model which considers 98 chemical species was used in this research in order to simulate the combustion of the gaseous fuels at differents engine operating conditions. The effect of spark advance, equivalence ratio, methane number (MN), charge (inlet pressure) and inlet temperature (manifold temperature) on engine knocking is evaluated. This work, explore the feasibility of using syngas with low methane number as fuel for commercial internal combustion engines.


Author(s):  
Dmytro Borysiuk ◽  
Viacheslav Zelinskyi ◽  
Igor Tverdokhlib ◽  
Yurii Polievoda

Constructive improvement of mobile energy means, in particular their main unit - the internal combustion engine, is directed on: maintenance of differentiation of size of parameters of functioning of mechanisms of systems depending on variability of conditions and modes of operation of cars; increase of technical resource at use of cars on purpose in the set operating conditions. The existing methods and tools for diagnosing vehicle engines do not fully determine their current technical condition, which requires the development of mathematical models to automate the process of diagnosing their components and parts was found іn the analysis of literature sources. The object of diagnosis is a diesel internal combustion engine of the YaMZ-238 family, which is part of the power unit of most vehicles. Mathematical model of automation of the process of diagnosing internal combustion engines of the YaMZ-238 family is presents in the article. Replacing real technical devices with their idealized models allows the widespread use of various mathematical methods. In this case, the internal combustion engine of the YaMZ-238 family, as the object of diagnosis, is presented in the form of a «black box», the input and output parameters of which have a finite set of values. In general, the mathematical model is a system of functional relationships between each diagnostic signal and structural parameters. For internal combustion engines of the YaMZ-238 family, a diagnostic matrix has been compiled, which includes a list of faults and signs of faults. It is determined that the process of diagnosis based on the model of the diagnostic object is possible if the inverse transformation of the number of signs of malfunctions into the number of structural parameters (malfunctions) of the object was unambiguous. The proposed mathematical model of automation of the process of diagnosing internal combustion engines of the family YaMZ-238 will detect faults of components and parts depending on their characteristics.


Author(s):  
Yue-Yun Wang ◽  
Ibrahim Haskara

Engine exhaust backpressure is a critical parameter in the calculation of the volumetric efficiency and exhaust gas recirculation flow of an internal combustion engine. The backpressure also needs to be controlled to a presetting limit under high speed and load engine operating conditions to avoid damaging a turbocharger. In this paper, a method is developed to estimate exhaust pressure for internal combustion engines equipped with variable geometry turbochargers. The method uses a model-based approach that applies a coordinate transformation to generate a turbine map for the estimation of exhaust pressure. This estimation can substitute for an expensive pressure sensor, thus saving significant cost for production vehicles. On the other hand, for internal combustion engines that have already installed exhaust pressure sensors, this estimation can be used to generate residual signals for model-based diagnostics. Cumulative sum algorithms are applied to residuals based on multiple sensor fusion, and with the help of signal processing, the algorithms are able to detect and isolate critical failure modes of a turbocharger system.


2020 ◽  
Vol 21 (3) ◽  
pp. 175-180
Author(s):  
Arthur R. Asoyan ◽  
Alexander S. Gorshkov ◽  
Ani H. Israelyan

A significant proportion of mechanical losses in internal combustion engines accounted for mechanical losses in the cylinder-piston group. Depending on the operating modes of the internal combustion engine, contact interaction in the piston-cylinder pair is possible, which leads to wear of the working surfaces of the resource-determining elements and a decrease in the operational life of the power unit as a whole, in connection with which the reduction of friction losses in the internal combustion engine elements and the piston - cylinder liner coupling in particular is relevant. Both domestic and foreign researchers are engaged in the solution of the above described problems, various profiles of pistons, methods of calculating the parameters of the oil layer are proposed, but the practical state of the issue determines the relevance of research in this direction. The paper considers the possibility of reducing the wear of piston skirts by reducing the contact surface in conjugation and providing an oil film in the friction zone, regardless of engine operating conditions. This opportunity is realized by forming a certain macro profile on the working surface of the piston skirt. The formation of the macrorelief was carried out by means of surface plastic deformation, with the reciprocating movement of a spherical tool on the machined surface.


This paper explains the importance of applying thermal barrier coating (TBC) technique in internal combustion engines by providing an effective way of reducing gas emission which are carbon monoxide (CO), oxide of nitrogen (NOX), hydrocarbon (HC) including particulate matter (PM) thereby increasing engine performance (brake thermal efficiency) achieved by applying coating layers on some internal combustion engine parts using materials with low thermal conductivities and matched coefficients of thermal expansion (CTE close to the substrate material) which are mainly ceramics. Energy demand for various activities of life is increasing on a daily basis. The world depends majorly on non-renewable energy sources from fossil fuels to meet these energy demands. To be comfortable in life, better means of transportation and provision of power are required. Compression and spark ignition engines which are also called Internal Combustion Engines (ICEs) provide better transport facilities and power. However, combusting these fuels in automobile and stationary engines produces unfriendly atmosphere, contaminates water and air that are consumed by man. Pollution created as a result of combustion of gases in ICE is one of the worst man made contribution to atmospheric pollution.


Author(s):  
A. V. Chavdarov

The prospects of using nano-crystalline ceramic coatings on internal combustion engine parts obtained by micro-arc oxidation (MDO) technology are considered. The tendency of development of engine building on replacement of cast-iron blocks and sleeves on aluminum with the special coverings received by galvanic methods is shown. It is noted that this direction does not involve the use of repair technologies, which significantly affects consumers. Analysis and practical tests have shown the possibility of using MDO technology both in the manufacture of engine parts and for the performance of restoration work. It is concluded that it is necessary to introduce this technology into the mass production of engines and pistons, as well as the need to develop a set of equipment for repair work.


2021 ◽  
Vol 12 (2) ◽  
pp. 112-121
Author(s):  
Oleksandr Khrulev ◽  
◽  
Olexii Saraiev ◽  
Iryna Saraieva ◽  
◽  
...  

The analysis of the crankshaft bearing condition of the automotive internal combustion engines in the case of insufficiency and breakage of oil supply to them is carried out. It is noted that this fault is one of the most common causes of damage to rubbing pairs in operation. At the same time, the different groups of bearings are often damaged, which cannot be explained within the framework of existing models of plain bearing lubrication. The objective of the work is to develop a mathematical model of oil supply to connecting rod bearings in emergency mode, taking into account the characteristic features of the bearing design. The model also, depending on the nature of the damage, should help to determine and explain the causes of bearing failures if they occur in different modes when operating conditions are broken. A computational model has been developed that makes it possible to assess the effect of design differences in the features of oil supply and the action of the centrifugal forces during crankshaft rotation on the oil column in the lubrication hole where oil is supplied to the conrod bearing. Calculations of the change in time of the oil supply pressure to the connecting rod bearings for the various designs of the crankshaft lubrication holes have been performed. It is shown that, depending on the operating mode of the engine and its design, the oil pressure in front of the connecting rod bearings does not disappear immediately after oil supply failure to crankshaft. Moreover, the lower the crankshaft speed is, the longer the lubrication of the conrod bearings will continue. The calculation results are confirmed by the data of the expert studies of the engine technical condition, in which the crankshaft was wedged in the damaged main bearings was found in the absence of serious damage to the connecting rod ones. It has been found that such features of the damage correspond to an rapid breakage of the oil supply to the crankshaft in the case of such operational damage as the oil pump and pressure reducing valve failure, the oil filter seal and oil pan destruction, etc. The developed model explains the difference in lubrication conditions and in the damage feature to the main and connecting rod bearings in the emergency cases of the oil supply breakage, which are observed during operation, and helps to clarify the failure causes. This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines when the operating conditions are broken.


2019 ◽  
Vol 178 (3) ◽  
pp. 182-186
Author(s):  
Zbigniew SROKA ◽  
Maciej DWORACZYŃSKI

The modification of the downsizing trend of internal combustion engines towards rightsizing is a new challenge for constructors. The change in the displacement volume of internal combustion engines accompanying the rightsizing idea may in fact mean a reduction or increase of the defining swept volume change factors and thus may affect the change in the operating characteristics as a result of changes in combustion process parameters - a research problem described in this publication. Incidents of changes in the displacement volume were considered along with the change of the compression space and at the change of the geometric degree of compression. The new form of the mathematical dependence describing the efficiency of the thermodynamic cycle makes it possible to evaluate the opera-tion indicators of the internal combustion engine along with the implementation of the rightsizing idea. The work demonstrated the in-variance of cycle efficiency with different forms of rightsizing.


2021 ◽  
Vol 4 (30) ◽  
pp. 99-105
Author(s):  
A. V. Summanen ◽  
◽  
S. V. Ugolkov ◽  

This article discusses the issues of assessing the technical condition of the camshaft, internal combustion engine. The necessary parameters for assessing the technical condition of the engine camshaft have been determined. How and how to measure and calculate this or that parameter is presented in detail. Methods for calculating the parameters are presented. A scheme and method for measuring neck wear, determining the height of the cam, determining the beating of the central journal of the camshaft are proposed. The main defects of the camshafts are presented. The issues of the influence of these parameters on the operability of the camshaft and the internal combustion engine as a whole are considered.


2021 ◽  
pp. 13-20
Author(s):  

The prospects of using the gas-static suspension of the internal combustion engine piston in transport vehicles and power plants are considered. The diagram of the piston and the method for calculating the stiffness and bearing capacity of the gas layer surrounding the piston are presented, as well as the results of experiments that showed the relevance of this method. The possibility of gas and static centering of the engine piston is confirmed. Keywords: internal combustion engine, piston, gasstatic suspension, stiffness, bearing capacity, gas medium. [email protected]


Sign in / Sign up

Export Citation Format

Share Document