Hot Compression Deformation Behavior and Microstructural Evolution of Al-7.5Zn-1.5Mg-0.2Cu-0.2Zr Alloy

2018 ◽  
Vol 913 ◽  
pp. 43-48
Author(s):  
Jian Liang He ◽  
Da Tong Zhang ◽  
Wen Zhang ◽  
Cheng Qiu

Hot compression tests of as-homogenized Al-7.5Zn-1.5Mg-0.2Cu-0.2Zr alloy were carried out on Gleeble-3500 thermal simulation machine at the temperature ranging from 350°C to 550°C and strain rate ranging from 0.001s-1 to 10s-1. Processing maps were established on the basis of dynamic material model, and the microstructure was studied using electron back scattered diffraction (EBSD) technique. The results showed that the peak stress and steady flow stress decrease with decreasing strain rate or increasing deformation temperature. There are one peak efficiency domain and one flow instability domain in the processing maps. The flow instability domain which exists in high-strain-rate region becomes larger with increasing strain. Shear bands occur at 45° toward the compression axis at grain interiors and meanwhile flow localization occurs. The optimum deformation temperature and strain rate ranges from 450°C to 500°C and 0.003s-1 to 0.1s-1, respectively, with high power dissipation efficiency of 34-39%.

2019 ◽  
Vol 50 (11) ◽  
pp. 5314-5323 ◽  
Author(s):  
Krystian Zyguła ◽  
Marek Wojtaszek ◽  
Oleksandr Lypchanskyi ◽  
Tomasz Śleboda ◽  
Grzegorz Korpała ◽  
...  

Abstract The hot deformation behavior of Ti-10V-2Fe-3Al alloy obtained by the powder metallurgy (PM) method was investigated. Material for the research was produced by blending of elemental powders followed by uniaxial hot pressing. Thermomechanical tests of Ti-10V-2Fe-3Al compacts were carried out to determinate the stress-strain relationships at the temperature range of 800 °C to 1000 °C and strain rate between 0.01 and 10 s−1. Based on the dynamic material model (DMM) theory, processing maps at constant strain value were developed using data obtained from hot compression tests. The processing maps were elaborated for the final strain value, which was 0.9, and with flow instability criterion domains applied to it. Two critical regions associated with the flow behavior of the investigated material were revealed. Microstructural changes during hot deformation at various temperatures and strain rates were discussed. The correlation between calculated efficiency of power dissipation, flow instability criterion, and microstructure evolution was determined. The presence of defects was confirmed in regions predicted by the instability maps. The microstructure of the investigated alloy, corresponding to the high efficiency of power dissipation characterized by the occurrence of dynamic recrystallization (DRX) phenomena, was also shown. Additionally, average hardness values in relation to variable process parameters were designated. Based on the conducted studies and analysis, processing windows for Ti-10V-2Fe-3Al alloy compacts were proposed.


2018 ◽  
Vol 913 ◽  
pp. 30-36
Author(s):  
Ran Liu ◽  
Hui Huang ◽  
Ya Liu ◽  
Li Rong

To study the hot deformation behavior of Al-Mg-Er alloy, hot compression tests were conducted on a Gleeble-1500D thermal simulator at the temperature range of 200-500°C with the strain rates from 0.001 to 10s-1. With the increase in the deformation temperature and the decrease in strain rates, the flow stress of the Al-Mg-Er alloy decreased. Processing maps were constructed to study on hot workability characteristics. The results showed that the flow stress curves exhibited the typical dynamic recrystallization characteristics and the stress decreased with the increase of deformation temperature and the decrease of strain rate. Moreover, the processing maps were established on the basis of dynamic material model and Prasad’s instability criterion.


2011 ◽  
Vol 291-294 ◽  
pp. 306-310 ◽  
Author(s):  
Gui Qing Chen ◽  
Gao Sheng Fu ◽  
Wen Duan Yan ◽  
Chao Zeng Cheng ◽  
Ze Chang Zou

The 3003 Al alloy was deformed by isothermal compression in the range of deformation temperature 300-500 °C at strain rate 0.0l-10.0 s-1 with Gleeble-1500 thermal simulator. Processing maps at a strain of 0.6 for hot working were developed on a dynamic materials model. The maps exhibit a flow instability domain at about 300 °C-380 °C and 1.0-10.0 s-1. DRX occurs extensively in the temperature range of 450-500 °C and at the strain rate of 10.0 s-1. The optimum parameters of hot working for 3003 Al alloy at the strain of 0.6 are confined at 500 °C and 10.0 s-1 with the highest efficiency (37%).


2018 ◽  
Vol 913 ◽  
pp. 63-68 ◽  
Author(s):  
Zhu Hua Yu ◽  
Da Tong Zhang ◽  
Wen Zhang ◽  
Cheng Qiu

Hot compression tests of homogenized 6063 Al alloy were carried out in the temperatures range from 390°C to 510°C and strain rates from 1s-1 to 20s-1 on a Gleeble-3500 thermal simulation machine. The results showed that the flow stress decreased with increasing deformation temperature or decreasing strain rate. The dynamic softening effect was more obvious when the alloy was deformed at strain rate of 20 s-1. The Arrhenius-type constitutive equation with strain compensation can accurately describe the flow stress of 6063 aluminum alloy during hot compression. Shear bands appeared in grains interior when the alloy deformed at high strain rates, corresponding to high Zenner-Hollomon (Z) parameters. When deformed under the conditions with low Z parameters, the dynamic recrystallization started occurred.


2013 ◽  
Vol 395-396 ◽  
pp. 930-935 ◽  
Author(s):  
Fang Cheng Qin ◽  
Yong Tang Li ◽  
Hui Ping Qi ◽  
Shi Wen Du

In order to investigate the thermal forming behavior of as-cast 42CrMo steel, the isothermal compression tests were performed on a Gleeble-1500D thermal mechanical simulator in the deformation temperature ranging from 850 to 1150°C with an interval of 100°C, the strain rate ranging from 0.05 to 5s-1 and the height reduction of 60%. On the basis of the flow stress data, dynamic materials model (DMM) and Prasad's instability criterion, the processing maps for as-cast 42CrMo steel were constructed at the strains of 0.4 and 0.6. The safe and unsafe areas and the corresponding deformation regimes were predicted during hot working, which are verified through the microstructure observation. The results indicate that the safe zones in the temperature range of 850~1150°C and strain rate of 0.05~0.35s-1, which exhibit the dynamic recovery and recrystallization. However, the flow instability domains are in the domain of deformation temperatures 850~1150°C and strain rate higher than 0.35s-1. Typical microstructure of instability is cracking, which should be avoided so as to obtain desired mechanical properties in hot processing. Finally, the forging parameters were predicted and optimized accurately by the processing maps, the temperature range of 1050~1150°C and strain rate of 0.05~0.1s-1 were recommended as the optimum deformation conditions for hot processing of as-cast 42CrMo steel.


2014 ◽  
Vol 1015 ◽  
pp. 203-206
Author(s):  
Quan Li ◽  
Jin Yang ◽  
Wen Jun Liu ◽  
Su Qin Luo ◽  
Ren Ju Cheng ◽  
...  

Hot compression tests of AZ61 magnesium alloy were performed on gleeble1500D at strain rate ranged in 0.01~1s-1 and deformation temperature 350~400°C.The results show that the flow stress and microstructures strongly depend on the deformation temperature and the strain rate. When the temperature was reduced and the strain rate was enhanced, the area after dynamic recrystallization was enhanced, and the average dynamically recrystallied grain size reduce. But the dynamically recrystallied grain size was not well-proportioned. In this paper the 350°C×1s-1 was suggested.


2015 ◽  
Vol 816 ◽  
pp. 810-817
Author(s):  
Yong Biao Yang ◽  
Zhi Min Zhang ◽  
Xing Zhang

The hot deformation behaviors of Aluminum alloy C919 were studied in the present investigation. The hot compression tests for C919 were carried out in the temperature range of 350°C~470°C and strain rates range of 0.001s-1~1s-1 using GLEEBLE-1500 thermal simulate testing machine. Optical microscopy (OM) was used for the microstructure characterization. The experimental results showed that the flow stress of C919 aluminum alloy decreased with increasing temperature and decreasing strain rates and the flow stress curves tended to increase at a strain rate of 1s-1 with increasing strain, while the flow stresses kept with increasing strain at lower strain rate. The alloys were more prone to dynamic recrystallization with decreasing strain rates during hot deformation. The hot compression behavior of C919 aluminum alloy can be described as hyperbolic sine function corrected Arrhenius relation. The processing maps for the alloy were built at a strain of 0.6. The instability deformation domain occurred at temperatures range from 350°C and 380°C and at a strain rate of 0.1-1s-1. Based on the processing maps and microstructure observations, the optimum hot-working parameters were determined to be at a temperature of 470°C in the strain rate range from 0.1-0.01s−1 for the C919 aluminum alloy.


2017 ◽  
Vol 62 (1) ◽  
pp. 59-65
Author(s):  
A. Łukaszek-Sołek ◽  
A. Świątoniowski ◽  
K. Celadyn ◽  
J. Sińczak

Abstract In this paper, the results of investigations into, and of the analyses of, the hot deformation behaviour of the Ni50Cr45N0.6 alloy were presented. Compression tests were conducted on a Gleeble 3800 thermo-mechanical simulator within the following temperatures range 850-1200°C and within that of the strain rate 1-40 s-1 to the constant true strain of 0.9, for the purpose of fulfilling the objective of obtaining experimental stress date. Those data were taken advantage of for the purpose of calculating the workability parameters, and that means the efficiency of power dissipation η, the flow instability ξ and the strain rate sensitivity m. The processing maps based upon Murty’s criterion were drawn up for the following true strain range: 0.2-0.9, and, subsequently, both processing windows and the flow instability areas were determined. For the alloy being analysed, the most advantageous conditions of metal forming were ascertained within the following range of temperatures: 950-1000°C, and for that of the strain rate amounting to 10-40 s-1, and that because of (occurring at the temperature of 950°C) the peak of the efficiency of power dissipation parameter η, amounting to 22% (in accordance with Murty’s criterion). The flow instability areas identified on the processing maps ought to be avoided in metal forming processes. Experimental rolling tests were also conducted.


2011 ◽  
Vol 704-705 ◽  
pp. 135-140 ◽  
Author(s):  
Yi Zhang ◽  
Bao Hong Tian ◽  
Ping Liu

The hot deformation behavior of Cu-Ni-Si-P alloy have been investigated by means of isothermal compression tests on a Gleeble-1500D thermal mechanical simulator in the temperature ranges of 873-1073 K and strain rate ranges of 0.01-5s-1. The results show that the dynamic recryatallization occurs in Cu-Ni-Si-P alloy during hot deformation. The peak stress during hot deformation can be described by the hyperbolic sine function. The influence of deformation temperature and strain rate on the peak stress can be represented using the Zener-Hollomon parameter. Moreover, the activation energy for hot deformation of Cu-Ni-Si-P alloy is determined to be 485.6 kJ / mol within the investigated ranges of deformation temperature and strain rate. The constitutive equation of the Cu-Ni-Si-P alloy is also established. Keywords: Cu-Ni-Si-P alloy; Hot deformation; Dynamic recrystallization; Zener-Hollomon parameter.


2016 ◽  
Vol 849 ◽  
pp. 811-818
Author(s):  
Biao Guo ◽  
Chang Chun Ge ◽  
Yi Xu ◽  
Qiu Yan Lu ◽  
Sui Cai Zhang

The hot deformation and densification behaviors of sintered P/F-10C50 steel were investigated by hot compression tests on Gleeble-1500 thermal mechanical simulator at the temperature ranging from 900 °C to 1000 °C and the strain rate ranging from 0.1 s-1 to 10 s-1. The flow and densification characteristics of the tested specimens at different deformation temperatures and strain rates were studied. The flow stress of the sintered steel persistently increases until the end of the test as the result of matrix and geometric work hardening. The higher deformation temperature and strain rate are conductive to the healing of the pores and promote the densification of the sintered steel, while the higher deformation temperature and lower strain rate impede the densification. The constitutive equation of the sintered steel is established by the means of stepwise regression. The flow stresses predicted by the established constitutive equation are in good agreement with the experimental values, and the correlation coefficient (R) and the average absolute relative error (AARE) are 0.9931 and 3.52%, respectively. These results demonstrate the hot deformation behaviors of the sintered P/F-10C50 steel are excellently predicted by the established constitutive equation.


Sign in / Sign up

Export Citation Format

Share Document