Shape Characteristics and Granulometry of Recycled Silicon Carbide Waste

2018 ◽  
Vol 928 ◽  
pp. 273-276 ◽  
Author(s):  
Radka Pernicova

The main aim of this paper is determined of properties, especially granulometry, of recycled silicon carbide waste and its possibility of using in new cementitious recipes. Paper is focused on importance of creation of grain curves and on relationship between silicon carbide and compounds in concrete matrix. Purpose of this research is using waste material and therefore minimalizes of its production and reduces ecological effect on environment by its recycling. Set of granulometry measurements of each recycled materials were done as well as its grain characteristic. The End of work includes the evaluation of the possible use of SiC waste for cement mixtures.

Author(s):  
Deiveegan A ◽  
Dhevasenaa P.R

The over exploitation of non-renewable materials is becoming a threat and therefore it is necessary to seek the possibility of recycling them, once their durability is expired. The recycled materials can be used effectively in architectural and civil engineering fields. They can stand close to the concept of green concrete which is in compatible with the environment. Foundry sand from casting industries is a waste material which is dumped extensively and in this study an attempt has been made to evaluate the usage of this waste material in concrete. The constant depletion of sand beds at all major sources of availability is a major concern and thus efforts are taken in order to replace sand in construction activities. In this study, effect of foundry sand as fine aggregate replacement on the compressive strength, flexural strength and split tensile strength of concrete with a mix proportion of 1: 1.28: 2.56: 0.45 was investigated at different limited curing periods (7 days and 28 days). The percentage of foundry sand used for replacement were 10%, 20%, 30%, 40%, 50%, 75% and 100% by weight of fine aggregate. Test showed impressive results, showing capability of foundry sand for being a component in concrete for imparting strength. Making concrete from recycled materials saves energy and conserves resources which lead to a safe sustainable environment.


Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


Author(s):  
K. B. Alexander ◽  
P. F. Becher

The presence of interfacial films at the whisker-matrix interface can significantly influence the fracture toughness of ceramic composites. The film may alter the interface debonding process though changes in either the interfacial fracture energy or the residual stress at the interface. In addition, the films may affect the whisker pullout process through the frictional sliding coefficients or the extent of mechanical interlocking of the interface due to the whisker surface topography.Composites containing ACMC silicon carbide whiskers (SiCw) which had been coated with 5-10 nm of carbon and Tokai whiskers coated with 2 nm of carbon have been examined. High resolution electron microscopy (HREM) images of the interface were obtained with a JEOL 4000EX electron microscope. The whisker geometry used for HREM imaging is described in Reference 2. High spatial resolution (< 2-nm-diameter probe) parallel-collection electron energy loss spectroscopy (PEELS) measurements were obtained with a Philips EM400T/FEG microscope equipped with a Gatan Model 666 spectrometer.


Author(s):  
L. A. Giannuzzi ◽  
C. A. Lewinsohn ◽  
C. E. Bakis ◽  
R. E. Tressler

The SCS-6 SiC fiber is a 142 μm diameter fiber consisting of four distinct regions of βSiC. These SiC regions vary in excess carbon content ranging from 10 a/o down to 5 a/o in the SiC1 through SiC3 region. The SiC4 region is stoichiometric. The SiC sub-grains in all regions grow radially outward from the carbon core of the fiber during the chemical vapor deposition processing of these fibers. In general, the sub-grain width changes from 50nm to 250nm while maintaining an aspect ratio of ~10:1 from the SiC1 through the SiC4 regions. In addition, the SiC shows a <110> texture, i.e., the {111} planes lie ±15° along the fiber axes. Previous has shown that the SCS-6 fiber (as well as the SCS-9 and the developmental SCS-50 μm fiber) undergoes primary creep (i.e., the creep rate constantly decreases as a function of time) throughout the lifetime of the creep test.


1980 ◽  
Vol 41 (C4) ◽  
pp. C4-111-C4-112 ◽  
Author(s):  
V. V. Makarov ◽  
T. Tuomi ◽  
K. Naukkarinen ◽  
M. Luomajärvi ◽  
M. Riihonen

2020 ◽  
Vol 11 (1) ◽  
pp. 39-41
Author(s):  
Avtar Judge
Keyword(s):  

In this article, a student describes his development and implementation of a 'candle recycler'; that is, a device for saving melted wax and, at the same time, generating reusable candles. His invention uses recycled materials and is intended for use by people who may not have access to electric lights and/or may not have sufficient funds to purchase candles. This invention is meant as a research-informed and negotiated action to overcome harms the student perceived in relationships among fields of science & technology and societies & environments (STSE).


2019 ◽  
Vol 26 (4) ◽  
pp. 197-208
Author(s):  
Leo Gu Li ◽  
Albert Kwok Hung Kwan

Previous research studies have indicated that using fibres to improve crack resistance and applying expansive agent (EA) to compensate shrinkage are both effective methods to mitigate shrinkage cracking of concrete, and the additions of both fibres and EA can enhance the other performance attributes of concrete. In this study, an EA was added to fibre reinforced concrete (FRC) to produce concrete mixes with various water/binder (W/B) ratios, steel fibre (SF) contents and EA contents for testing of their workability and compressive properties. The test results showed that adding EA would slightly increase the superplasticiser (SP) demand and decrease the compressive strength, Young’s modulus and Poisson’s ratio, but significantly improve the toughness and specific toughness of the steel FRC produced. Such improvement in toughness may be attributed to the pre-stress of the concrete matrix and the confinement effect of the SFs due to the expansion of the concrete and the restraint of the SFs against such expansion.


1959 ◽  
Vol 111 (1-6) ◽  
pp. 142-153 ◽  
Author(s):  
V. G. Bhide ◽  
A. R. Verma
Keyword(s):  

1959 ◽  
Vol 111 (1-6) ◽  
pp. 63-70 ◽  
Author(s):  
R. S. Mitchell ◽  
N. Barakat ◽  
E. M. El Shazly
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document