HVEM In Situ Investigation of Stress-Induced Grain Growth during Thermal Annealing of Thin Al-Alloy Films on a Si/SiO2 Substrate

1992 ◽  
Vol 94-96 ◽  
pp. 551-556 ◽  
Author(s):  
D. Katzer ◽  
D. Gerth ◽  
R. Riesenberg
1991 ◽  
Vol 225 ◽  
Author(s):  
C. Y. Chang ◽  
R. W. Vook

ABSTRACTIn-situ transmission electron microscope (TEM) electromigration damage (EMD) tests were performed on pure Al films which were thermally evaporated onto oxidized silicon wafers under different deposition conditions. Three different aluminum alloy films, Al-2wt%Cu, Al-8wt%Cu, and Al-2wt%Cu-lwt%Si were also examined. TEM images were recorded photographically and by a video camcorder. The sample stripes were stressed by a high DC current density (≈1.5 MA/cm2). A linear temperature ramp (5°C/min) was supplied by an external, computer controlled heater. The morphology of EMD-induced voids was found to be strongly dependent on microstructure. In small grain size Al stripes, EMD occurred by the formation of void “fingers” which propagated in an almost random manner. In large grain size Al and Al alloy stripes, the EMD-elongated voids propagated approximately parallel to each other and along the field direction. They were preceded with clearly identifiable local thinning. The thinned regions often had crystallographic edges. Contrary to the commonly held belief that EMD occurs only by a grain boundary diffusion mechanism, the present study clearly shows that surface or interface diffusion was the dominant, latter stage EMD failure mode in large grain size films.


1993 ◽  
Vol 316 ◽  
Author(s):  
Yuzun Gao ◽  
Charles W. Allen ◽  
R. C. Bitrtcher

ABSTRACTAn anomalous effect of electron irradiation on thermal grain growth in Ni has been observed using in situ TEM. Grain growth during thermal annealing was suppressed in areas irradiated with electrons. Grain growth suppression required a minimum electron energy between 100 and 200 keV. This alteration of thermal grain growth is attributed to electron beam injection of a surface contaminant such as carbon. This work points out that care must be exercised in the execution and evaluation of in situ TEM or ion beam experiments that deal with microstructural changes which are highly compositionally sensitive.


2013 ◽  
Vol 753 ◽  
pp. 7-10 ◽  
Author(s):  
Harvinder Singh Ubhi ◽  
Ian Brough ◽  
Kim Larsen

Changes in the microstructure and crystallographic orientations during in-situ heating of folded Al 0.1%Mg have been followed by SEM and EBSD. The folding process results in both strain and texture gradients across the folded region which in turn can influence the recovery and recrystallisation processes as well as crystallographic texture. This work is an extension of ex-situ heating experiments on folded nickel 200, titanium and ferritic steel [1,2]. The present findings illustrates that during isothermal in-situ heating at 295oC nucleation and growth starts close to the surface where the deformation is highest, new grains form and grow in a region about quarter depth of the sheet thickness. After this grain growth occurs resulting in large grains that meet up at the centre line. These results are consistent with those found in ex-situ heated Ni200 alloy [2], where fine grains were found in the compressed and tensile regions with large grains in the middle of the sheet.


2007 ◽  
Vol 127 ◽  
pp. 147-152 ◽  
Author(s):  
Yousuke Koike ◽  
Toshio Inase ◽  
Shinji Takayama

Annealing behavior of dilute Cu-X alloys (adding element X = transition metal and rare-earth metal with less than 3 at %) was investigated in terms of resistivity, internal stress, grain growth and hillock formation. The resistivity increases with addition of impurities regardless of kinds of adding elements. Generally, resistivity starts to decrease on annealing above 200 °C. Among present Cu dilute alloys, Sn addition shows the lowest resistivity 2.5 μΩcm on annealing at 400 °C. However, compared with a pure Cu film, salient grain growth of present dilute alloys does not takes place even at temperatures above 300 °C , where the grain size is nearly the same as that of as-deposited films. In-situ surface observation using an atomic force microscope (AFM ) revealed that hillocks did not grow on cooling stage (under tension), but started to form on heating stage (under compression). The scanning electron microscopy (SEM) observation of hillocks thus formed in present dilute alloy films shows that the external appearance of these defects was quite different from those observed in Al and Al alloy films. They most likely grow with a preferential crystal plane, not irregular growth like Al and Al alloy films. The internal stresses in most of the present as-deposited dilute Cu alloy films were nearly zero or compression of –25 to –100MPa, and upon annealing, they started to increase in tensile manner due to thermal stresses induced by the mismatch of the thermal expansion between substrates and deposited films. A large stress relaxation started to occur above 250°C, associating with a large number of hillock formation.


Author(s):  
D.I. Potter ◽  
A. Taylor

Thermal aging of Ni-12.8 at. % A1 and Ni-12.7 at. % Si produces spatially homogeneous dispersions of cuboidal γ'-Ni3Al or Ni3Si precipitate particles arrayed in the Ni solid solution. We have used 3.5-MeV 58Ni+ ion irradiation to examine the effect of irradiation during precipitation on precipitate morphology and distribution. The nearness of free surfaces produced unusual morphologies in foils thinned prior to irradiation. These thin-foil effects will be important during in-situ investigations of precipitation in the HVEM. The thin foil results can be interpreted in terms of observations from bulk irradiations which are described first.Figure 1a is a dark field image of the γ' precipitate 5000 Å beneath the surface(∿1200 Å short of peak damage) of the Ni-Al alloy irradiated in bulk form. The inhomogeneous spatial distribution of γ' results from the presence of voids and dislocation loops which can be seen in the bright field image of the same area, Fig. 1b.


Author(s):  
S. Naka ◽  
R. Penelle ◽  
R. Valle

The in situ experimentation technique in HVEM seems to be particularly suitable to clarify the processes involved in recrystallization. The material under investigation was unidirectionally cold-rolled titanium of commercial purity. The problem was approached in two different ways. The three-dimensional analysis of textures was used to describe the texture evolution during the primary recrystallization. Observations of bulk-annealed specimens or thin foils annealed in the microscope were also made in order to provide information concerning the mechanisms involved in the formation of new grains. In contrast to the already published work on titanium, this investigation takes into consideration different values of the cold-work ratio, the temperature and the annealing time.Two different models are commonly used to explain the recrystallization textures i.e. the selective grain growth model (Beck) or the oriented nucleation model (Burgers). The three-dimensional analysis of both the rolling and recrystallization textures was performed to identify the mechanismsl involved in the recrystallization of titanium.


Sign in / Sign up

Export Citation Format

Share Document