Simulation of Design Reliability and Bearing Capacity of Normal and Oblique Sections of Span Prestressed Reinforced Concrete Structures

2019 ◽  
Vol 968 ◽  
pp. 267-280
Author(s):  
Olha Ahaieva ◽  
Vasyl M. Karpiuk ◽  
Oleksandr Posternak

The paper studies the influence of various constructive factors on the parameters of design reliability and bearing capacity of span prestressed reinforced concrete structures. With the help of experimental design techniques and an effective software package, 12 adequate mathematical models have been developed and brought to the level of practical use. They allow to predict the reliability and bearing capacity of normal and oblique sections of specified structures for any combinations of concrete class, reinforcement class and reinforcement ratio. These models also allow to investigate both the direction of the change in bearing capacity and reliability index of prestressed reinforced concrete elements with the change of the above-mentioned factors, which is useful in solving some optimization problems at the design stage.

2018 ◽  
Vol 196 ◽  
pp. 04008
Author(s):  
Vasiliy Murashkin ◽  
Gennadiy Murashkin

The paper presents a brief historical reference of the theory of reinforced concrete structures calculation and its. It shows that modeling of concrete deformations makes it possible not only to carry out calculations of durability and to determine reinforced concrete elements deflection under the estimated load, but also to analyze their a stress-strain state at each stage. The study suggests a new model of concrete deformation which makes it possible to make calculations of concrete elements with characteristics which are different from those given in specification documents. The researchers use the proposed model of deformation and calculate curved reinforced concrete beam bearing capacity. These calculations for normally reinforced elements do not considerably differ from the calculations given in the documents. All the main functional dependencies on the calculation stages are visualized.


2021 ◽  
Vol 9 (1) ◽  
pp. 1-5
Author(s):  
Irina Mayackaya ◽  
Batyr Yazyev ◽  
Anastasia Fedchenko ◽  
Denis Demchenko

Reinforced concrete elements of structures in the form of columns, beams, ceilings are widely used in the construction of buildings and structures of industrial and civil construction. In most cases, the columns serve as supports for other building elements, for example, crossbars, slabs, girders, beams. One of the cycles of the work of reinforced concrete structures is the state of their repair and reconstruction, including the stages of strengthening the elements. There is a problem of strengthening of reinforced concrete columns. The article deals with the issue of reinforcing columns and other structural elements having a cylindrical surface, with polymeric composite materials in the form of carbon fiber lamellae. The use of composite materials allows to increase the service life and strength of reinforced concrete structures used in construction.


2013 ◽  
Vol 470 ◽  
pp. 921-924
Author(s):  
Hai Chao Tan

As the progress of theory and computer technology, nonlinear analysis is widely applied in civil engineering. Strip method, as one of the numerical methods, is used widely especially in the analysis of beams, columns and shell structures. The first half of this paper introduces the theoretical model and the basic assumptions of the strip method; the latter half of this paper compiles the strip method into computer program using FORTRAN language. At last, using beams with rectangular cross-section of reinforced concrete structures as an example, the paper analyze the factors, such as the strength of the steel bars, which have an impact on the bearing capacity of reinforced concrete structures.


2017 ◽  
Vol 9 (2) ◽  
pp. 70-78 ◽  
Author(s):  
Justas SLAITAS ◽  
Zbynek HLAVAC ◽  
Arnoldas ŠNEIDERIS

This article examines flexural reinforced concrete structures condition assessment process in existing buildings on the stage where the reinforcement stress is between the yield and the tensile strength. The research is made on V. Jokūbaitis proposed methodology directly measuring the compression zone height, allowing us to evaluate the behavior of reinforced concrete beam fracture sufficiently precisely. This paper confirms the hypothesis that, when reinforcement reaches yielding stress, elastic strain dominates in concrete‘s compression zone and it is reasonable to use triangular concrete compression zone diagram, without tensile concrete above crack evaluation. The methodology of reinforced concrete structures bearing capacity assessment according to limit normal section crack depth is proposed. There is established connection between bending moments, when reinforcement achieve yielding stress and tensile strength, which allows us to decide about structures bearing capacity reserve. The results are confirmed with experimental studies and calculated values obtained by methodologies based on different reduced stress diagrams of concrete‘s compressive zone.


2021 ◽  
Vol 350 ◽  
pp. 00011
Author(s):  
Mikalai Shalabyta ◽  
Elizabeth Matweenko ◽  
Nikifor Matweenko ◽  
Valery Rakhuba

Comparative analysis of calculations of calculation numerical models for pulling out embedded parts in reinforced concrete structures is carried out. Based on the results of numerical modeling, new information about the stress-strain state in reinforced concrete elements from the local action of the tensile force has been obtained.


2015 ◽  
Vol 14 (2) ◽  
pp. 105-112 ◽  
Author(s):  
Bartosz Szostak ◽  
Maciej Trochonowicz

During designing in historical object we can have a problem with historical reinforced concrete elements. Many designers, classifies this elements as low strength. They are convicted that this type of elements in historical building can be only a monument and cannot be used in this construction as an structural element. It is very important in this type of buildings to keep as many historical material as it is possible. Authors researched the literature which has been a guide in the design and execution of these elements. By comprising used algorithms and physico-mechanical properties of old materials with algorithms and materials, which are using today, we are able to estimate the strength of such elements.


2014 ◽  
Vol 13 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Izabela Skrzypczak ◽  
Lidia Buda-Ożóg

Compliance criteria for the sample size n = 3 have a lot of disadvantages [5,6,7] and they can affect the reduction of quality of produced concrete and, consequently,  they can cause too much risk of the recipient (the investor) side. Therefore, the effect of the sample size on the defined quality index of produced concrete has been evaluated. The effect of the sample size and standard deviation on the reliability index of reinforced concrete structures has also been determined.The impact analysis of compliance criteria on the reliability index of reinforced concrete structures was conducted for a compression column. The obtained values of the reliability index results confirm the correctness of the quality index formula and concrete quality proposed in method of defining.


1994 ◽  
Vol 370 ◽  
Author(s):  
Raoul François ◽  
Ginette Arliguie

AbstractThis paper deals with the effect of the ITZ on the service life of reinforced concrete. In the case of reinforced concrete structures, the penetration of chlorides does not depend only on concrete transfer properties but also on the loading applied, on the state of strains and on the exposure to the aggressive environment.In order to take into account these different parameters, we have performed experiments on reinforced concrete elements, over a long period. The samples used have to be of an adequate size (3 meters long) and stored in a salt fog in a loading state so as to be representative of the actual operating conditions of the reinforced concrete structures.The bending of the beams leads to the development of cracks which are neither preceded nor accompanied by microcracks, but the cement paste-aggregate interfaces are damaged in the tensile areas.The service loading of reinforced concrete has two consequences : firstly, a cracking with widths ranging between 0.05 mm and 0.5 mm according to the intensity of the mechanical strength applied. Secondly, a damage of the ITZ in the tensile areas causing an increase of chloride penetration directly proportional to the intensity of the stress applied to the beam.The model of the development of corrosion, worked out in relation with time and based on our results, emphasizes the influence of the paste-aggregate interface damage on the duration of the service life.


Sign in / Sign up

Export Citation Format

Share Document