scholarly journals USE OF NANOSIZED CHROMIUM DOPED TiO2 SUPPORTED ON ZEOLITE FOR METHYLENE BLUE DEGRADATION

2010 ◽  
Vol 10 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Aarti Ameta ◽  
Indu Bhati ◽  
Rakshit Ameta ◽  
Suresh C. Ameta

The photocatalytic degradation of methylene blue dye under visible light has been investigated using chromium modified titanium dioxide supported on zeolite (Cr-TiO2/zeolite). The photocatalyst was prepared by sol-gel method and characterized by X-ray diffraction and SEM. The rate of photodegradation of dye was monitored spectrophotometrically. The effect of pH, dye concentration, amount of photocatalyst and intensity of light on the rate of photocatalytic reaction was observed. The results showed that the use of Cr-doped TiO2 increased the rate of photocatalytic degradation of methylene blue as compared to untreated TiO2. The photocatalytic mechanism of Cr-TiO2 catalyst has been tentatively discussed.   Keywords: Methylene blue, zeolite, chromium, photocatalytic degradation

Author(s):  
Bapuso M. Babar ◽  
Aniruddh A. Mohite ◽  
Vithoba L. Patil ◽  
Udayraj T. Pawar ◽  
Laxman D. Kadam ◽  
...  

Author(s):  
Sridharan Balu ◽  
Kasimayan Uma ◽  
Guan-Ting Pan ◽  
Thomas C.-K. Yang ◽  
Sayee Kannan Ramaraj

Semiconductor materials have been shown to have better photocatalytic behavior and can be utilized for the photodegradation of organic pollutants. In this work, three-dimensional flower-like SnS2 were synthesized by a facile hydrothermal method. Core-shell structured SiO2@α-Fe2O3 nanocomposites were then deposited on the top of the SnS2 flowers. The as-synthesized nanocomposites were characterized by X-ray diffraction (XRD), Raman spectroscopy, field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) and photoluminescence spectroscopy (PL). The photocatalytic behavior of the SnS2-SiO2@α-Fe2O3 nanocomposites was observed by observing the degradation of methylene blue (MB). The results show an effective enhancement of photocatalytic activity for the degradation of MB especially for the 15 wt. % SiO2@α-Fe2O3 nanocomposites on SnS2 flowers.


2014 ◽  
Vol 970 ◽  
pp. 29-32 ◽  
Author(s):  
Pongsaton Amornpitoksuk ◽  
Sumetha Suwanboon

The co-effect of PO43- and I- on the formation of a heterosturucture photocatalyst in the Ag3PO4-AgI system was studied by the co-precipitation method between AgNO3 and the precipitating agent. The precipitating agent was prepared by varying the mole ratios between Na2HPO4 and KI. At 10 mol.% KI, the product showed the mixed phase between Ag3PO4 and un-identified phase. For 30 - 90 mol.% KI, the un-identified phase and AgI were detected in the x-ray diffraction patterns. The un-identified phase strongly adsorbed the methylene blue dye. The product prepared from 30 mol.% KI had the highest content of un-identified phase and also showed the highest degree of decolorization in the dark. The photocatalytic properties of products in this system were confirmed by the decolorization of methylene blue under visible illumination.


2020 ◽  
Vol 20 (9) ◽  
pp. 5759-5764
Author(s):  
V. Karthikeyan ◽  
G. Gnanamoorthy ◽  
P. Varun Prasath ◽  
V. Narayanan ◽  
Suresh Sagadevan ◽  
...  

Herein, we report the facile synthesis, characterization and visible-light-driven photocatalytic degradation of perforated curly Zn0.1Ni0.9O nanosheets synthesized by hydrothermal process. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies confirmed the cubic phase crystalline structure and growth of high density perforated curly Zn0.1Ni0.9O nanosheets, respectively. As a photocatalyst, using methylene blue (MB) as model pollutant, the synthesized nanosheets demonstrated a high degradation efficiency of ~76% in 60 min under visible light irradiation. The observed results suggest that the synthesized Zn0.1Ni0.9O nanosheets are attractive photocatalysts for the degradation of toxic organic waste in the water under visible light.


2020 ◽  
Vol 17 (3) ◽  
pp. 29-40
Author(s):  
Shreyas Dindorkar ◽  
Jaymin Mistry ◽  
Jayesh Hire ◽  
Khushi Jain ◽  
Nandini Khona ◽  
...  

Herein we report the synthesis of graphene oxide-based agar composites using a solution casting method. Graphene oxide was synthesized by modified Hummer’s method and was characterized using X-ray diffraction (XRD) and Raman spectroscopy. The graphene oxide-based agar composites were characterized using X-ray diffraction (XRD) and UV-visible spectroscopy. Optical band gap obtained from the Tauc plot showed that the composites could be used in the photodegradation of dyes. The synthesized composite material was checked for its practical applicability in the degradation of methylene blue dye under solar irradiation; with an increase in the concentration of graphene oxide, catalyst, and H2O2, the rate constant increases. The rate constant was found to be inversely proportional to the concentration of methylene blue dye. Dosage of graphene oxide was found to be the most prominent factor in increasing the rate of photodegradation. It is clear from the data for the reaction system that the degradation reaction follows pseudo-first-order kinetics. Keywords: Composites; Ultra-sonication; Photodegradation; Methylene Blue; XRD; Graphene Oxide; Kinetics; Biocompatibility


Author(s):  
Doaa A. Ali ◽  
Emad E. El-Katori ◽  
Ensaf Aboul Kasim

Abstract The existing work emphasizes mainly to advance the low surface features of zinc oxide (ZnO) by dispersion of Fe2O3 nanoparticles on the ZnO surface fabricated via a sol-gel route with Triton X-100 as a structure and capping agent to synthesis a novel series of Fe2O3/ZnO nanocomposites (NCs) with novel features assembling between the two nanoparticle materials. Fe2O3/ZnO is an effective semiconductor which has higher efficiency in the removal of numerous organic dyes and other pollutants. The NCs was characterized via HRTEM, XRD, FTIR, BET, RS and UV–Vis DRS. A photocatalytic performance of the fabricated Fe2O3/ZnO nanocomposites was estimated by continual degradation of the methylene blue dye (MB) as an organic pollutant in aqueous solution. The comparison between pure ZnO (NPs) and Fe2O3/ZnO (NCs) show advanced photocatalytic performance under both UV and sunlight irradiation. The impact of several parameters, for example, dopant contents, photocatalytic dosage, pH, chemical oxygen demand (COD) and point of zero charge (PZC) were evaluated and discussed. In addition, the protective species’ role was estimated via a radical scavenger route. The photo-degradation data shown that the Fe2O3/ZnO (10 wt%) semiconductor is the fit photocatalyst between the fabricated semiconductors for the methylene blue dye (MB) degradation. The intensity reduction peak of UV emission and the intensity increment of visible emission were led to the lessening in recombination between electrons and holes which are finally responsible for the maximum photocatalytic performance of Fe2O3/ZnO nanocomposites. The gained results confirmed that the dopant content is the major factor in photocatalytic degradation activity.


Sign in / Sign up

Export Citation Format

Share Document