Synthesis and Electrochemical Properties of Ternary Co-, Cu- and Ni- Based Metal-Organic Frameworks Electrode for Battery Supercapacitor Hybrid Application

2020 ◽  
Vol 981 ◽  
pp. 17-22
Author(s):  
Amir Luqman Sanusi ◽  
Nurul Khairiyyah Mohd Zain ◽  
Izan Izwan Misnon ◽  
Ahmad Salihin Samsudin ◽  
Rajan Jose

Metal-organic frameworks (MOFs) composed by coordination bonds between metal ion with organic linker has a uniform combination of micro and mesoporous structures has been used for several application including battery supercapacitor hybrid. (BSH). In BSH, MOF offer several advantages including high surface area, porous, and structure tunability. This paper reports the synthesis of ternary MOF of copper (Cu), nickel (Ni) and cobalt (Co) with 1,4-benzenedicarboxylic acid. The Co/Cu/Ni-MOF is synthesized using hydrothermal method at 160 °C for 12h and further develop as a BSH electrode. The physicochemical properties of MOF were characterized using FESEM, FTIR, XRD, BET and the electrochemical properties were evaluated using cyclic voltammetry (CV), charge-discharge cycling (CDC) and electrochemical impedance spectroscopy (EIS). Electrochemical analysis indicated that the MOF has high specific capacitance (CS) of 591 F g-1 at a current density of 1 A g-1 and 519 F g-1 at scan rate of 2 mV s-1, and possess low series resistance (RS) of 0.44 Ω and equivalent distributed resistance (Rd) of 1.07 Ω.

Nanomaterials ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 2091
Author(s):  
Ngo Minh Phuoc ◽  
Euiyeon Jung ◽  
Nguyen Anh Thu Tran ◽  
Young-Woo Lee ◽  
Chung-Yul Yoo ◽  
...  

Capacitive deionization (CDI) based on ion electrosorption has recently emerged as a promising desalination technology due to its low energy consumption and environmental friendliness compared to conventional purification technologies. Carbon-based materials, including activated carbon (AC), carbon aerogel, carbon cloth, and carbon fiber, have been mostly used in CDI electrodes due their high surface area, electrochemical stability, and abundance. However, the low electrical conductivity and non-regular pore shape and size distribution of carbon-based electrodes limits the maximization of the salt removal performance of a CDI desalination system using such electrodes. Metal-organic frameworks (MOFs) are novel porous materials with periodic three-dimensional structures consisting of metal center and organic ligands. MOFs have received substantial attention due to their high surface area, adjustable pore size, periodical unsaturated pores of metal center, and high thermal and chemical stabilities. In this study, we have synthesized ZIF-67 using CNTs as a substrate to fully utilize the unique advantages of both MOF and nanocarbon materials. Such synthesis of ZIF-67 carbon nanostructures was confirmed by TEM, SEM, and XRD. The results showed that the 3D-connected ZIF-67 nanostructures bridging by CNTs were successfully prepared. We applied this nanostructured ZIF-67@CNT to CDI electrodes for desalination. We found that the salt removal performance was significantly enhanced by 88% for 30% ZIF-67@CNTs-included electrodes as compared with pristine AC electrodes. This increase in salt removal behavior was analyzed by electrochemical analysis such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements, and the results indicate reduced electrical impedance and enhanced electrode capacitance in the presence of ZIF-67@CNTs.


2021 ◽  
Author(s):  
Bahareh ameri ◽  
Akbar Mohammadi Zardkhoshoui ◽  
Saied Saeed Hosseiny Davarani

Metal-organic frameworks (MOFs) derived nanoarchitectures have special features, such as high surface area (SA), abundant active sites, exclusive porous networks, and remarkable supercapacitive performance when compared to traditional nanoarchitectures. Herein,...


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 95
Author(s):  
Amarajothi Dhakshinamoorthy ◽  
Eva Montero Lanzuela ◽  
Sergio Navalon ◽  
Hermenegildo Garcia

Metal organic frameworks (MOFs) are porous crystalline solids whose frameworks are constituted by metal ions/nodes with rigid organic linkers leading to the formation of materials having high surface area and pore volume. One of the unique features of MOFs is the presence of coordinatively unsaturated metal sites in their crystalline lattice that can act as Lewis acid sites promoting organic transformations, including aerobic oxidation reactions of various substrates such as hydrocarbons, alcohols, and sulfides. This review article summarizes the existing Co-based MOFs for oxidation reactions organized according to the nature of substrates like hydrocarbon, alcohol, olefin, and water. Both aerobic conditions and peroxide oxidants are discussed. Emphasis is placed on comparing the advantages of using MOFs as solid catalysts with respect to homogeneous salts in terms of product selectivity and long-term stability. The final section provides our view on future developments in this field.


2021 ◽  
Author(s):  
Sirajunnisa P ◽  
Liz Hannah George ◽  
Narayanapillai Manoj ◽  
Prathapan S ◽  
G.S. Sailaja

Fluorescent biocompatible porous carriers have been investigated as suitable probes for drug delivery and sensing applications owing to their intrinsic fluorescence and high surface area originating from their porous structure...


2013 ◽  
Vol 4 (4) ◽  
pp. 1781 ◽  
Author(s):  
Richard Luis Martin ◽  
Maciej Haranczyk

2021 ◽  
Vol 245 ◽  
pp. 01023
Author(s):  
Xinlong Liu ◽  
Peng Liu ◽  
Na An ◽  
Chen Liu

Metal–organic frameworks (MOFs) are an attractive class of hybrid materials with metal clusters and organic linkers. The unusual properties of MOFs, such as permanent nanoscale porosity, high surface area, uniformly structured cavities and the availability of in-pore functionality and outer-surface modification, are advantageous using as lipase immobilization platform. Herein, we covalent immobilized CALB onto MOFs and then evaluated the biocatalyst performance in the esterification of oleic acid with methanol for biodiesel production. Experimental data about the methanolysis process was evaluated by response surface methodology. The highest yield of 98.9 ± 0.4% was obtained under the optimized conditions: methanol/oil ratio of 3.65:1, a reaction temperature of 46.3 °C, a CALB@MOF loading of 117.77 mg and a reaction time of 11.55 h, which was closed to the predicted value (100.00%). Verification experiment confirmed the validity of the predicted model.


Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1481
Author(s):  
Yajie Chen ◽  
Xue Bai ◽  
Zhengfang Ye

Heavy metals are inorganic pollutants which pose a serious threat to human and environmental safety, and their effective removal is becoming an increasingly urgent issue. Metal–organic frameworks (MOFs) are a novel group of crystalline porous materials, which have proven to be promising adsorbents because of their extremely high surface areas, optimizable pore volumes and pore size distributions. This study is a systematic review of the recent research on the removal of several major heavy metal ions by MOFs. Based on the different structures of MOFs, varying adsorption capacity can be achieved, ranging from tens to thousands of milligrams per gram. Many MOFs have shown a high selectivity for their target metal ions. The corresponding mechanisms involved in capturing metal ions are outlined and finally, the challenges and prospects for their practical application are discussed.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2896 ◽  
Author(s):  
Natalia Manousi ◽  
George Zachariadis ◽  
Eleni Deliyanni ◽  
Victoria Samanidou

Food samples such as milk, beverages, meat and chicken products, fish, etc. are complex and demanding matrices. Various novel materials such as molecular imprinted polymers (MIPs), carbon-based nanomaterials carbon nanotubes, graphene oxide and metal-organic frameworks (MOFs) have been recently introduced in sample preparation to improve clean up as well as to achieve better recoveries, all complying with green analytical chemistry demands. Metal-organic frameworks are hybrid organic inorganic materials, which have been used for gas storage, separation, catalysis and drug delivery. The last few years MOFs have been used for sample preparation of pharmaceutical, environmental samples and food matrices. Due to their high surface area MOFs can be used as adsorbents for the development of sample preparation techniques of food matrices prior to their analysis with chromatographic and spectrometric techniques with great performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document