First-Principles Study of 3D Transition Metal Doped Single-Layer Graphene

2020 ◽  
Vol 984 ◽  
pp. 82-87
Author(s):  
Bao Zhu Wang ◽  
Sheng Tang ◽  
Tong Wei ◽  
Jie Ren ◽  
Min Wang

The electronic structure and magnetic properties of C atoms in Co, Ni-substituted graphene single-layers were studied by first-principles calculation method based on density functional theory. The study found that the pure graphene single-layer is an insulator, does not have magnetism, and we found that the doping of Co and Ni atoms alone does not make the system magnetic. Both Co and Ni atoms are capable of generating impurity levels in the graphene single-layer system. The impurity level of Co atom doping is 0.75 eV below the Fermi level, and the impurity level of Ni atom doping is 0.4 eV above the Fermi level. Studies on the coupling doping of Co and Ni atoms show that two different distance Co atoms or Ni atoms in the graphene single-layer are not always ferromagnetically coupled, and a stable magnetic ground state cannot be obtained. It can produce different magnetic ground states by controlling different doping distances, thus we provide one new way to control the spin properties.

2019 ◽  
Vol 61 (6) ◽  
pp. 1150
Author(s):  
Atsushi Suzuki ◽  
Takeo Oku

AbstractTransition metal doped cesium lead halide (CsPbI_3) perovskite compounds were studied for application in photovoltaic solar cells. Electronic structures, chemical shifts of ^207Pb and ^127I-NMR, vibration modes in infrared and Raman spectra of transition metals (Mn^2+, Fe^2+ or Cu^2+)-doped CsPbI_3 perovskite compounds were studied by the first-principles calculation using density functional theory. The CsPb(Fe)I_3 perovskite crystals had a slight perturbation of crystal field in the coordination structure. The electron density distribution was delocalized on the 5 p orbital of I atom, the 3 d orbital of Fe atom and the 6 p orbital of Pb atom. The first excited process was based on ligand metal charge transfer from the 5 p orbital on I atom to the 3 d orbital of Fe atom. The chemical shifts of ^127I-NMR were associated with the electron correlation of electron-nuclear spin interaction and nuclear quadrupole interactions based on electron field graduate. The asymmetric vibrations of Pb–I bonds stretching mode related to electron conductivity with scattering of the carrier diffusion as phonon effectiveness. The slight perturbation of the coordination structure in the CsPb(Fe)I_3 perovskite crystal will improve the photovoltaic and optical properties.


Nanomaterials ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 962 ◽  
Author(s):  
Bin Qiu ◽  
Xiuwen Zhao ◽  
Guichao Hu ◽  
Weiwei Yue ◽  
Junfeng Ren ◽  
...  

The electronic structure and the optical properties of Graphene/MoS2 heterostructure (GM) are studied based on density functional theory. Compared with single-layer graphene, the bandgap will be opened; however, the bandgap will be reduced significantly when compared with single-layer MoS2. Redshifts of the absorption coefficient, refractive index, and the reflectance appear in the GM system; however, blueshift is found for the energy loss spectrum. Electronic structure and optical properties of single-layer graphene and MoS2 are changed after they are combined to form the heterostructure, which broadens the extensive developments of two-dimensional materials.


2021 ◽  
pp. 2141002
Author(s):  
Duo Wang ◽  
Lu Yang ◽  
Jianan Cao

In this paper, a first-principles calculation method based on density functional theory is used to study the effect of substitutional doping of Au, Ag, and Cu at Mo site on the magnetic properties of the single-layer MoS2 system. It is found that the Au, Ag, and Cu-doped systems can all exhibit ferromagnetic properties at room temperature. The calculation of defect formation energy and hybrid orbital theory confirms that the system can exist stably. After comparing the energy difference, it is concluded that the magnetic properties of the doped system are more stable in the spin-polarized state. The magnetic moment contributed by impurity atoms is limited. The Mo and S atoms near the impurity atoms are induced by the impurity atoms, and the magnetic moment of the system is mainly produced by this method. There is a ferromagnetic coupling between impurity atoms and surrounding Mo atoms.


Author(s):  
I. Yu. Sklyadneva ◽  
Rolf Heid ◽  
Pedro Miguel Echenique ◽  
Evgueni Chulkov

Electron-phonon interaction in the Si(111)-supported rectangular √(7 ) ×√3 phases of In is investigated within the density-functional theory and linear-response. For both single-layer and double-layer √(7 ) ×√3 structures, it...


2014 ◽  
Vol 895 ◽  
pp. 420-423 ◽  
Author(s):  
Sathya Sheela Subramanian ◽  
Baskaran Natesan

Structural optimization, magnetic ground state and electronic structure calculations of tetragonal PbMnO3have been carried out using local density approximation (LDA) implementations of density functional theory (DFT). Structural optimizations were done on tetragonal P4mm (non-centrosymmetric) and P4/mmm (centrosymmetric) structures using experimental lattice parameters and our results indicate that P4mm is more stable than P4/mmm. In order to determine the stable magnetic ground state of PbMnO3, total energies for different magnetic configurations such as nonmagnetic (NM), ferromagnetic (FM) and antiferromagnetic (AFM) were computed for both P4mm and P4/mmm structures. The total energy results reveal that the FM non-centrosymmetric structure is found to be the most stable magnetic ground state. The electronic band structure, density of states (DOS) and the electron localization function (ELF) were calculated for the stable FM structure. ELF revealed the distorted non-centrosymmetric structure. The band structure and DOS for the majority spins of FM PbMnO3showed no band gap at the Fermi level. However, a gap opens up at the Fermi level in minority spin channel suggesting that it could be a half-metal and a potential spintronic candidate.


Author(s):  
Yogeshwaran Krishnan ◽  
Sateesh Bandaru ◽  
Niall J. English

A series of transition-metal-doped Fe1−xMxCo(PO4)4(010) and Fe3Co1−xMx(PO4)4(010) electro-catalyst surfaces (with M = Mn, Os, Ru, Rh and Ir) have been modelled via density-functional theory (DFT) to gauge their oxygen-evolution reactions (OER).


Author(s):  
Huai-Yang Sun ◽  
Shuo-Xue Li ◽  
Hong Jiang

Prediction of optical spectra of complex solids remains a great challenge for first-principles calculation due to the huge computational cost of the state-of-the-art many-body perturbation theory based GW-Bethe Salpeter equation...


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2091 ◽  
Author(s):  
Tie Yang ◽  
Liyu Hao ◽  
Rabah Khenata ◽  
Xiaotian Wang

In this work, we systematically studied the structural, electronic, magnetic, mechanical and thermodynamic properties of the fully compensated spin-gapless inverse Heusler Ti2MnAl compound under pressure strain condition by applying the first-principles calculation based on density functional theory and the quasi-harmonic Debye model. The obtained structural, electronic and magnetic behaviors without pressure are well consistent with previous studies. It is found that the spin-gapless characteristic is destroyed at 20 GPa and then restored with further increase in pressure. While, the fully compensated ferromagnetism shows a better resistance against the pressure up to 30 GPa and then becomes to non-magnetism at higher pressure. Tetragonal distortion has also been investigated and it is found the spin-gapless property is only destroyed when c/a is less than 1 at 95% volume. Three independent elastic constants and various moduli have been calculated and they all show increasing tendency with pressure increase. Additionally, the pressure effects on the thermodynamic properties under different temperature have been studied, including the normalized volume, thermal expansion coefficient, heat capacity at constant volume, Grüneisen constant and Debye temperature. Overall, this theoretical study presents a detailed analysis of the physical properties’ variation under strain condition from different aspects on Ti2MnAl and, thus, can provide a helpful reference for the future work and even inspire some new studies and lead to some insight on the application of this material.


2014 ◽  
Vol 887-888 ◽  
pp. 378-383 ◽  
Author(s):  
Yu Chen ◽  
Zheng Jun Yao ◽  
Ping Ze Zhang ◽  
Dong Bo Wei ◽  
Xi Xi Luo ◽  
...  

The structure stability, mechanical properties and electronic structures of B2 phase FeAl intermetallic compounds and FeAl ternary alloys containing V, Cr or Ni were investigated using first-principles density functional theory calculations. Several models are established. The total energies, cohesive energies, lattice constants, elastic constants, density of states, and the charge densities of Fe8Al8 and Fe8XAl7 ( X=V, Cr, Ni ) are calculated. The stable crystal structures of alloy systems are determined due to the cohesive energy results. The calculated lattice contants of Fe-Al-X ( X= V, Cr, Ni) were found to be related to the atomic radii of the alloy elements. The calculation and analysis of the elastic constants showed that ductility of FeAl alloys was improved by the addition of V, Cr or Ni, the improvement was the highest when Cr was used. The order of the ductility was as follows: Fe8CrAl7 > Fe8NiAl7 > Fe8VAl7 > Fe8Al8. The results of electronic structure analysis showed that FeAl were brittle, mainly due to the orbital hybridization of the s, p and d state electron of Fe and the s and p state electrons of Al, showing typical characteristics of a valence bond. Micro-mechanism for improving ductility of FeAl is that d orbital electron of alloying element is maily involved in hybridization of FeAl, alloying element V, Cr and Ni decrease the directional property in bonding of FeAl.


2019 ◽  
Vol 16 (2) ◽  
pp. 77 ◽  
Author(s):  
Muhammad Zamir Mohyedin ◽  
Afiq Radzwan ◽  
Mohammad Fariz Mohamad Taib ◽  
Rosnah Zakaria ◽  
Nor Kartini Jaafar ◽  
...  

Bi2Se3 is one of the promising materials in thermoelectric devices and very useful out of environmental concern due to its efficiency to perform at room temperature. Based on the first-principles calculation of density functional theory (DFT) by using CASTEP computer code, structural and electronic properties of Bi2Se3 were investigated. The calculation is conducted within the exchange-correlation of local density approximation (LDA) and generalized gradient approximation within the revision of Perdew-Burke-Ernzerhof (GGA-PBE) functional. It was found that the results are consistent with previous works of theoretical study with small percentage difference. LDA exchange-correlation functional method is more accurate and have a better agreement than GGA-PBE to describe the structural properties of Bi2Se3 which consist of lattice parameters. LDA functional also shown more accurate electronic structure of Bi2Se3 that consist of band structure and density of states (DOS) which consistent with most previous theoretical works with small percentage difference. This study proves the reliability of CASTEP computer code and show LDA exchange-correlation functional is more accurate in describing the nature of Bi2Se3 compared to the other functionals.


Sign in / Sign up

Export Citation Format

Share Document