Regulation of the Properties of Construction Composites Depending on the Material Composition

2020 ◽  
Vol 989 ◽  
pp. 306-311
Author(s):  
Ekaterina S. Gerasimova ◽  
Kamila Masharipova

This paper is devoted to research of directional regulation possibility of the properties of a composite based on the Portland cement by using limestone waste. It is shown that the introduction of limestone waste contributes to changing the nature of crystallization and structure formation of cement stone. With the introduction of limestone waste, in the amount of 15 % by weight of cement, it is possible to obtain the compositions of the class not less than B25-B35.

2018 ◽  
Vol 196 ◽  
pp. 04012
Author(s):  
Alexander Guryanov ◽  
Vyacheslav Kozlov ◽  
Yulia Sidorenko

Cement-containing building materials durability depends both on the original clinker composition and on the structure of hydrated portland cement compositions on micro and nanoscales. To calculate structural parameters of silicate-hydrate calcium nanoparticles during portland cement hydration process, the researchers applied the method of small-angle neutron scattering which included distribution of nanoparticles in size, medium nanoparticles radius, fractal dimension. Modifying nanoparticles blending with portland cement composition affects structural parameters of silicate-hydrate calcium nanoparticles. The authors used complex modifying nanoparticles in this study. Nanoparticle composition included a component that served as a filler and a chemically active component that was used as a modifier. The first component was a mixture of alpha oxide aluminum, gamma oxide aluminum and carbonate sludge. The second component presented a mixture of alumoalkaline sludge with alumocalcite sludge. These sludges were of technogenic origin. The research showed that application of complex nanoagents made it possible to control process of silicate-hydrate calcium nanoparticles structure formation, and, as the result, to influence durability of cement stone.


2019 ◽  
Vol 16 (4) ◽  
pp. 504-518
Author(s):  
I. L. Chulkova ◽  
I. A. Selivanov ◽  
V. D. Galdina

Introduction. The processes of structure formation of cement compositions and the development of effective technologies of building materials is an urgent task for building material science. The use of large-scale man-made product of pulp and paper enterprises – osprey as a fibrous filler in organic and mineral compositions is the successful decision of the problem. The paper analyzes the ways of using osprey in the building materials’ production. The aim of the research is to study the osprey influence on the processes of structure formation of cement stone by quantitative x-ray phase analysis.Materials and methods. The organic and mineral compositions were obtained on the basis of portland cement and osprey. The authors studied the compositions’ phase of osprey, portland cement and the processes of cement stone structure formation in organ and mineral compositions by quantitative x-ray phase analysis.Results. The authors determined the compositions’ phase of mineral impurities of osprey, cellulose, cement, cement stone, organic and mineral compositions and two compositions containing 25 and 75% by weight.Discussion and conclusions. The osprey application as a filler in the organic and mineral composition causes inhibition of processes of cement hydration. The presence of osprey in the hardening organic and mineral composition leads to a change in the composition and structure of the cement stone in comparison with the phase composition of the cement stone without additives. The result of these changes is a significant increase in the amount of calcite, waterite and a significant decrease in the amount of portland. The authors establish that the effective joint work of the reinforcing component of the osprey with the cement matrix is possible with a limited amount of osprey in organic and mineral compositions.


Author(s):  
R. S. Fediuk ◽  
A. V. Baranov ◽  
D. V. Khromenok ◽  
I. R. Zelenskiy ◽  
S. V. Kim

The aim of the paper is to improve the strength properties of cement stone via control for structure formation. The composite binder composition includes the type CEM I 42.5N (58–70%) Portland cement, active silica additive (25–37%), quartz sand (2.5–7.5%) and limestone crushed waste (2.5–7.5%). The optimum technology of mechanochemical activation is proposed for the cement stone. The optimization of the structure formation process is provided by the mineral-mineral modifier, crushed together with Portland cement in a planetary mill to a specific surface of 550 m2/kg. The amorphous phase of silicon dioxide in the composition of the modifier intensifies the calcium hydroxide binding forming during alite hydration. It contributes to the growth in low-basic calcium silicate and lowers the cement stone basicity, while reducing the amount of portlandite. The crystalline phase of β-quartz silicon dioxide plays the role of crystallization centers new formations and the cement stone microstructure compaction. Limestone particles contribute to the formation of calcium hydrocarbonate and act as a microfiller together with fine ground quartz sand clogging the pores in the cement stone.


2007 ◽  
Vol 1 (3) ◽  
pp. 179-184
Author(s):  
Victor Shevchenko ◽  
◽  
Wojciech Swierad ◽  

The glass wastes as a cullet are widely used for the production of building materials mainly as inert aggregate. However finely grained glass powder has the very developed surface, so can not be passive toward cement solutions, what was confirmed in practice. In literature data there is no information about chemical influence of finely grained glass on the process of hardening, especially in an early pre-induction hydration period, which substantially causes the structure formation of cement stone and its properties.


2022 ◽  
Vol 906 ◽  
pp. 59-67
Author(s):  
Alexandr Sergeevich Inozemtcev ◽  
Evgenij Korolev ◽  
Duong Thanh Qui

With the development of 3D technologies in construction, the development of formulations that are indifferent to the influence of the environment is in demand. Conditions of intense water loss from cement systems arise during the layer-by-layer printing process. This leads to a decrease in density, high shrinkage, and a decrease in the strength and durability of the composite. The use of superabsorbent polymer (SAP) solutions, in contrast to granules, will provide hardening Portland cement with a water supply for internal care of hydration processes. The aim of the work is to study the effect of SAP solution on the processes of structure formation of cement stone, hardening in unfavorable conditions. In this paper, the features of the structure formation of cement systems in the presence of SAP are established. It is shown that the use of polymer in an amount of no more than 1.5% by the weight of Portland cement provides the formation of a more perfect crystalline structure of the cement stone, which allows for an increase in the degree of cement hydration. When the amount of SAP is ≥ 1.5% by the weight of Portland cement, a decrease in the intensity of the maxima corresponding to hydration products is observed.


The article presents the study of processes of structure formation of cement stone and products of hardening of organic-mineral compositions with fibrous filler (shavings) by the electronic scanning microscopy method. It is established that the additive-free cement stone at the age of 28 days has a dense and homogeneous structure, consists of calcium hydro-silicates, Portlandite and calcite - newgrowths characteristic for cement systems. Cellulose fibers, which make up the bulk of the substance of shavings, are sufficiently active, which determines the high adhesion of the hydration products of the cement binder to their surface. It is shown that the introduction of shavings into the organo-mineral composition leads to inhibition of cement hydration processes. Organo-mineral compositions with different shavings content (two compositions) were analyzed. The first composition is characterized by a fairly dense structure, the cement stone consists of globular nanoscale nuclei of hydrosilicates, Portlandite and calcite. The second composition has a loose porous structure, cement stone consists of non-hydrated cement grains, newgrowths are represented by calcite and vaterite. The structure of the contact zone "osprey fiber-cement stone" in the organo-mineral composition of the first composition indicates a good adhesion of the filler surface with the phases of hydrated cement. The use of shavings as a fibrous filler (the first composition) increases the tensile and bending strength, as well as the wear resistance of organo-mineral compositions. The data obtained by scanning electron microscopy are confirmed by the results of studying the processes of structure formation of cement stone by quantitative x-ray phase analysis.


2020 ◽  
Author(s):  
Ekaterina Gerasimova ◽  
Elizaveta Gumirova

The paper deals with the problem of utilization of red mud which is a waste product from alumina production using the Bayer method. The principal possible use for the red mud of JSC “Bogoslovsky aluminum plant” (Sverdlovsk region) for the compositions based on Portland cement is shown. It was found that the mud introduction accelerates beginning of the cement paste setting and thickens the paste reducing its mobility. It is concluded that the introduction of red mud up to 30 % is justified in terms of strength indicators. The work is carried out using mathematical planning of experiments. Keywords: red mud, Portland cement, active mineral additive, composition, properties, bauxite, chemical composition, cement stone strength, mathematical planning of experiments


2019 ◽  
Vol 974 ◽  
pp. 195-200
Author(s):  
Yury R. Krivoborodov ◽  
Svetlana V. Samchenko

The article presents the results of a study of the effect of synthesized microdisperse additives of crystalline hydrates based on calcium sulfoaluminates on the properties of cement stone. The effectiveness of the use of a rotary pulsation apparatus (RPA) to obtain microdispersed additives is identified. The possibility of accelerating the hardening of cement stone by entering microdispersed additives into its composition is shown. It has been established that in the presence of microdispersed additives of crystalline hydrates in the cement stone, the phase composition of hydrate tumors changes, the amount of calcium hydrosilicates and ettringite increases, the porosity decreases and the strength of the cement stone increases. This provision is confirmed by the increase in the degree of cement hydration, the amount of bound water in all periods of hardening of the stone. It is proposed to use microdisperse additives, which play the role of primers for the crystallization of ettringite and calcium hydrosilicates, to increase the strength of cement stone in the early stages of hardening.


2019 ◽  
Vol 974 ◽  
pp. 149-155
Author(s):  
Irina V. Kozlova ◽  
Alexey E. Bespalov ◽  
Alexandra V. Bespalova

Cement compositions prepared by mixing cement with a stabilized finely dispersed slag suspension, which allow improving the structural, physical and mechanical characteristics of the cement stone are considered. On the first day of hardening, the strength of modified specimens increased by 54%, at the grade age - by 43%, and the porosity decreased by 13.8 and 17.3%, respectively. The possibility of obtaining an injection solution for soil consolidation on the basis of Portland cement and a stabilized slag suspension with the concentration of a finely dispersed slag of 50 g/l is considered. Studies have shown that the injection solution under study has reduced viscosity and sedimentation, increased compressive strength. After 28 days of hardening, the strength was 14.2 MPa, which is higher than the recommended values ​​for consolidation of soil under the foundations (4-6 MPa), and at a concentrated load, for the base under the foundations of the columns (9-10 MPa). The data obtained allows considering an injection solution based on Portland cement and slag suspension for the use in the injection technology of soil consolidation.


Sign in / Sign up

Export Citation Format

Share Document