Development of Technology for Welding Repair of Steel Housings Using a Combination of Ultrasonic Vibrations and Forced Cooling

2020 ◽  
Vol 989 ◽  
pp. 747-752
Author(s):  
Marat R. Fatkullin ◽  
Ayrat M. Fayrushin ◽  
Rif G. Rizvanov

Now, one of the most pressing issues in the development of petroleum engineering is increasing the efficiency of apparatus and machines, as well as reducing material, energy and labor resources. During operation, oil-refining equipment over time destroyed by welded joints due to the impact of power and temperature loads, corrosion, and other factors. The cause of damage in welded joints of oil and gas equipment can be justified by the occurrence in them of structural heterogeneity and residual stresses during and after welding. Today manual arc welding is almost the only applicable in the repair of equipment for oil and gas processing, which require welding operations. The high temperature source of energy and the difference in deformation properties of parts are the cause of the occurrence of substantial residual stresses, which cause a change in shape, a significant decrease in strength, a decrease in the corrosion resistance of the metal, which adversely affects the durability and reliability of the structure. At present, the technology of repair with due to manual arc welding with the concomitant heating of the defective area and subsequent heat treatment is used. A complex of simultaneously proceeding processes accompanies the welding process: thermal effects on the metal in the heat-affected zone, metallurgical processes in the weld pool and crystallization of the metal in the weld pool. The repair technology presented by us, which consists in a combination of ultrasonic shock vibrations and forced cooling during the welding process, allows to improve the mechanical properties of the welded joint, as well as to refuse to carry out heating during welding and subsequent heat treatment.

2014 ◽  
Vol 564 ◽  
pp. 519-524
Author(s):  
Seyed Jafar Golestaneh ◽  
N. Ismail ◽  
M.K.A.M. Ariffin ◽  
S.H. Tang ◽  
Mohammad Reza Forouzan ◽  
...  

Submerged arc welding (SAW) is a well-known method to weld seam in manufacturing of large diameters steel pipes in oil and gas industry. The main subject of SAW design is selection of the optimum combination of input variables for achieving the desired output variables of weld. Input variables include voltage, amperage and speed of welding and output variables include residual stresses due to welding. On the other hand, main target in multi response optimization (MRO) problem is to find input variables values to achieve to desired output variables. Current study is a combination and modification of some works of authors in MRO and SAW subjects. This study utilizes an experiment design according to Taguchi arrays. Also a committee machine (CM) modeling the problem by CM using two approaches. The first CM consists eight experts with traditional approach in computation and second CM includes elite experts. Genetic algorithm was applied to find CM weights and desired responses. Results show that proposed approach in CM has a smaller root mean squire error (RMSE) than traditional approach. The validation of CM model is done by comparison of results with simulation of SAW process and residual stresses in a finite element environment. Finally, the results show few differences between the real case responses and the proposed algorithm responses.


Author(s):  
Yurianto ◽  
Gunawan Dwi Haryadi ◽  
Sri Nugroho ◽  
Sulardjaka ◽  
Susilo Adi Widayanto

The heating and cooling at the end of the welding process can cause residual stresses that are permanent and remain in the welded joint. This study aims to evaluate the magnitude and direction of residual stresses on the base metal and heat-affected zone of rail joints welded by the manual shielded metal arc and thermite welding. This research supports the feasibility of welding for rail. The material used in this study is the R-54 rail type, and the procedure used two rail samples of one meter long each, welded using manual shielded metal arc welding and thermite welding. The base metal and heat-affected zone of the welded joints were scanned with neutron ray diffraction. The scan produces a spectrum pattern and reveals the direction of the residual stress along with it. We found the strain value contained in both types of welded joints by looking at the microstrain values, which we obtained using the Bragg equation. The results show that the magnitude and direction of the residual stress produced by manual shielded metal arc welding and thermite welding are not the same. Thermite welding produces lower residual stress (lower crack susceptibility) than manual shielded metal arc welding. The melt's freezing starts from the edge to the center of the weld to create random residual stresses. The residual stress results of both the manual shielded metal arc welding and thermite welding are still below the yield strength of the base metal.


2019 ◽  
Vol 12 (2) ◽  
pp. 44-53
Author(s):  
Hamid M. Mahan

This research deals with influence of the heat treatment on welded joints using the shielded metal arc welding (SMAW) on three types of steel with different carbon ratios under constant conditions such as the thickness of metal 20 mm, welding current 120A , voltage 80V, Diameter 15 mm and angle 60 degree. Mechanical tests were carried out to include tensile, bending, micro hardness and microstructure testing. The results showed that the steel with a low carbon content has the highest value of hardness after performing heat treatment in the area of ​​welding line 370 HV. Unlike the moderate carbon- steel, the value of hardness was higher in the 310HV, the tensile strength of steel decreased to 554Mpa when carrying out the heat treatment compared with steel containing higher carbon ratios 523MPa . In the other side  improving toughness and impact strength for welded joints on which heat treatments have been conducted after the welding process , where  highest impact value was obtained in the high carbon steel  214 J


2018 ◽  
Vol 69 (7) ◽  
pp. 1826-1829
Author(s):  
Claudiu Babis ◽  
Augustin Semenescu ◽  
Oana Roxana Chivu ◽  
Maria Alina Gligor ◽  
Gabriel Iacobescu ◽  
...  

The occupational risk assessment of a machine building company must cover each activity and workstation, taking into account each component of the production system (work system), each workload, work equipment and the work environment. This assessment is an extremely complicated and complex issue since the production system of such an enterprise is particularly complex and complicated. Welding assembly is a highly polluting technology process, especially of the atmosphere and soil. The formation of gases in the welding process is the result of burning of the electrodes, powders, forming the molten metal bath and making the weld seam. Welding operators are exposed to smoke and toxic gases resulting from the welding process, which can in many cases be hazardous to health. Many acute intoxications that may be caused by excessive exposure to or short exposure to smoke and gas resulting from the welding process have been studied over time. In the paper are presented the elements of risk related to the welding process and the most widespread occupational diseases that can occur in the ranges of the welding operators. The following are presented the noxious emissions from welding and are determined by a practical method the emission of noxious at welding deposition of a welding sample, using the manual arc welding process with coated electrode.


Author(s):  
Pavel Layus ◽  
Paul Kah ◽  
Viktor Gezha

The Arctic region is expected to play an extremely prominent role in the future of the oil and gas industry as growing demand for natural resources leads to greater exploitation of a region that holds about 25% of the world’s oil and gas reserves. It has become clear that ensuring the necessary reliability of Arctic industrial structures is highly dependent on the welding processes used and the materials employed. The main challenge for welding in Arctic conditions is prevention of the formation of brittle fractures in the weld and base material. One mitigating solution to obtain sufficiently low-transition temperatures of the weld is use of a suitable welding process with properly selected parameters. This work provides a comprehensive review with experimental study of modified submerged arc welding processes used for Arctic applications, such as narrow gap welding, multi-wire welding, and welding with metal powder additions. Case studies covered in this article describe welding of Arctic steels such as X70 12.7-mm plate by multi-wire welding technique. Advanced submerged arc welding processes are compared in terms of deposition rate and welding process operational parameters, and the advantages and disadvantages of each process with respect to low-temperature environment applications are listed. This article contributes to the field by presenting a comprehensive state-of-the-art review and case studies of the most common submerged arc welding high deposition modifications. Each modification is reviewed in detail, facilitating understanding and assisting in correct selection of appropriate welding processes and process parameters.


2021 ◽  
Vol 410 ◽  
pp. 37-41
Author(s):  
Natalia A. Astafeva ◽  
Andrey A. Balanovskiy ◽  
Anna A. Pershina

The article analyzes the results of a study of the influence of zonal heat treatment on the structure of welded joints of pipeline elements made of titanium alloys Ti-3.5Al-1.5Mn. In the manufacture of such structures, the TIG welding method is used to join pipe elements, after which the heat treatment method can be used to relieve residual stresses. The experiments have confirmed the effectiveness of zonal heat treatment preceded by welding. It was revealed that for welded joints made of titanium alloys, heat treatment can stabilize the structure. In experiments conducted by the method of optical metallography, the structure of heat treated and untreated welded joints was investigated. The influence of heat treatment on the weld structure and heat-affected zone was identified.


2020 ◽  
Vol 38 (4) ◽  
pp. 355-362
Author(s):  
Yosuke OGINO ◽  
Masahiro IIDA ◽  
Satoru ASAI ◽  
Shohei KOZUKI ◽  
Naoya HAYAKAWA ◽  
...  

2020 ◽  
Vol 21 (2) ◽  
pp. 67-71
Author(s):  
Gheorghe Novac ◽  
Bogdan Novac

The paper presents aspects regarding the influence of vibrations on the mechanical properties of welded joints, made with basic materials of Spanish and Romanian origin. In this research is presented the practical way to make the necessary assemblies for the proposed tests. The tests show that vibrations have a significant contribution to the quality of welded joints. This is explained by the appearance of several crystallization centres which makes the structure finer. By using vibrations, the atoms are rearranged in the structure, ensuring a proper de-tensioning. The stresses induced in welded metals are significantly reduced by the use of vibration during welding process. The addition materials have a significant contribution to the emergence of stresses in welded joints as well. These stresses can contribute to the appearance of microstructural constituents with significant hardness. The welding equipment and technologies used also have a significant contribution to the emergence of the remaining stresses. For example, the submerged arc welding technology (SAF) can introduce very high internal stresses. By using vibrations during the welding process, it is achieved a fine structure and a significant reduction of remaining stresses in the welded joints.


Author(s):  
V.G. VYALKOV ◽  
S.N. GLAZUNOV ◽  
P.A. TSIRKOV

In experiment, worked out the parameters of deposition and the composition of the ferromagnetic charge, which ensure a defect-free weld layer (no pores, inclusions, hot and cold cracks) with a surface hardness of 52- 56 HRC without additional technological measures (heating products) and subsequent heat treatment.


Sign in / Sign up

Export Citation Format

Share Document