Synthesis of Few-Layer Graphene on Copper Using a Low-Cost Atmospheric Thermal Chemical Vapour Deposition System with Methane and Forming Gas

Nano Hybrids ◽  
2016 ◽  
Vol 10 ◽  
pp. 1-13
Author(s):  
M.S. Shamsudin ◽  
S.J. Fishlock ◽  
M. Rusop ◽  
S.M. Sanip ◽  
Suan Hui Pu

Graphene has attracted wide interest across a range of applications due to its electrical, mechanical and optical properties. The use of a low-cost, table-top chemical vapour deposition system to deposit few-layer graphene onto copper is reported in this work. Characterisation of the graphene is performed using Raman spectroscopy and atomic force microscopy. The results show that few-layer graphene can be deposited at 1000 °C using CH4 as a carbon precursor, and 5% H2, 95% N2 forming gas as a diluent. The effects of deposition temperature, deposition time, and forming gas addition on graphene film quality was studied experimentally. An increase in graphene quality was observed when forming gas was added during deposition.

Crystals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 449
Author(s):  
Shuxian Cai ◽  
Xingfang Liu ◽  
Xin Zheng ◽  
Zhonghua Liu

Ordered graphene ribbons were grown on the surface of 4° off-axis 4H-SiC wafers by sublimation epitaxy, and characterized by using scanning electron microscopy (SEM), atomic force microscopy (AFM) and micro-Raman spectroscopy (μ-Raman). SEM showed that there were gray and dark ribbons on the substrate surface, and AFM further revealed that these ordered graphene ribbons had clear stepped morphologies due to surface step-bunching. It was shown by μ-Raman that the numbers of graphene layers of these two types of regions were different. The gray region was composed of mono- or bilayer ordered graphene ribbon, while the dark region was of tri- or few-layer ribbon. Meanwhile, ribbons were all homogeneous and had a width up to 40 μm and a length up to 1000 μm, without micro defects such as grain boundaries, ridges, or mono- and few-layer graphene mixtures. The results of this study are useful for optimized growth of high-quality graphene film on silicon carbide crystal.


2018 ◽  
Vol 42 (2) ◽  
pp. 73-76 ◽  
Author(s):  
Azadeh Jafari ◽  
Mohammad Mosavat ◽  
Alireza Meidanchi ◽  
H. Hossienkhani

Boron carbide nanostructures were grown on Si wafers through introduction of a mixture of B2O3 dissolved in methanol using hot filament chemical vapour deposition. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Raman spectroscopy and the four-point probe technique were applied to characterise the properties of the boron carbide nanostructures. The XRD results showed that two kinds of boron carbide chemical compounds (B4C and B2C2) were deposited and the effect of boron concentration was significant. The FESEM images showed that the boron carbide nanostructures are made of crystal clusters with a cauliflower-like shape, in which the grain boundaries appear more clearly with increasing boron concentration. In addition, the AFM results showed that the surface roughness of the boron carbide films decreased with increasing boron concentration due to grain boundary diffusivity. The Raman spectrum results confirmed the presence of a B4C network and G and D bands. The results of the four-point probe method indicated that samples with higher boron incorporation showed the lowest sheet resistance (0.06 ω sq−1), which may be because of the decrease in inter-grain boundaries caused by the larger cluster size. This study suggests that higher boron incorporation in boron carbide nanostructures results in larger crystal clusters, higher thickness and lower film resistivity.


2010 ◽  
Vol 21 (9) ◽  
pp. 095602 ◽  
Author(s):  
Roumen Vitchev ◽  
Alexander Malesevic ◽  
Roumen H Petrov ◽  
Raymond Kemps ◽  
Myrjam Mertens ◽  
...  

2008 ◽  
Vol 19 (30) ◽  
pp. 305604 ◽  
Author(s):  
Alexander Malesevic ◽  
Roumen Vitchev ◽  
Koen Schouteden ◽  
Alexander Volodin ◽  
Liang Zhang ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 2511
Author(s):  
Dali Ji ◽  
Xinyue Wen ◽  
Tobias Foller ◽  
Yi You ◽  
Fei Wang ◽  
...  

Due to the excellent chemical inertness, graphene can be used as an anti-corrosive coating to protect metal surfaces. Here, we report the growth of graphene by using a chemical vapour deposition (CVD) process with ethanol as a carbon source. Surface and structural characterisations of CVD grown films suggest the formation of double-layer graphene. Electrochemical impedance spectroscopy has been used to study the anticorrosion behaviour of the CVD grown graphene layer. The observed corrosion rate of 8.08 × 10−14 m/s for graphene-coated copper is 24 times lower than the value for pure copper which shows the potential of graphene as the anticorrosive layer. Furthermore, we observed no significant changes in anticorrosive behaviour of the graphene coated copper samples stored in ambient environment for more than one year.


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Weifeng Zhao ◽  
Furong Wu ◽  
Hang Wu ◽  
Guohua Chen

A top-down method was developed for producing colloidal dispersions of graphene sheets. Graphite nanosheets comprising hundreds of carbon layers were dispersed and gently ball-milled to exfoliate into graphene in a variety of organic solvents. After 30 hours of the shear-force-dominated grinding and a subsequent 4000 r.p.m. of centrifugation, single- and few-layer graphene sheets were readily prepared and homogeneously and stably suspended in the good solvent medium which possesses a surface tension value close to 40 mJm−2, such as inN,N-dimethylformamide, at a concentration up to 0.08 mg ml−1, achieving a yield higher than 32.0 wt%. The graphene materials in the colloidal suspension were characterized using scanning and transmission electron microscopy and atomic force microscopy.


Sign in / Sign up

Export Citation Format

Share Document