scholarly journals Crystallographic and Geometric Factors in the Shear Development in FCC Single Crystals: Molecular Dynamics Simulation and Experimental Study

Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 666
Author(s):  
Dmitry Lychagin ◽  
Andrey Dmitriev ◽  
Anton Nikonov ◽  
Ekaterina Alfyorova

An approach to the study of the mechanisms of shear deformation in the bulk of face centered cubic (FCC) single crystals based on molecular dynamics simulation is proposed. Similar shear patterns obtained experimentally, and in simulations, allow consideration of the effect of crystallographic and geometric factors on deformation mechanisms. Deformation of <001> single-crystal samples in the form of tetragonal prisms with {110} and {100} lateral faces and different height-to-width ratios was studied. The simulation showed that the sample vertices are the preferential sites for shear initiation. It was found that the formation of deformation domains and interaction of shear planes are caused by the geometry of shear planes in the bulk of the single crystal, i.e., by their location in relation to basic stress concentrators and by their orientations relative to the lateral faces. The deformation patterns obtained in the simulations were in good agreement with those observed in the experiments. The fractions of sliding dislocations and dislocation barriers were determined for different materials, taking into account the crystallographic and geometric factors.

2007 ◽  
Vol 121-123 ◽  
pp. 1053-1056
Author(s):  
Guo Rong Zhong ◽  
Qiu Ming Gao

Molecular dynamics simulation of the solidification behavior of liquid nickel nanowires has been carried out based on the embedded atom potential with different cooling rates. The nanowires constructed with a face-centered cubic structure and a one-dimensional (1D) periodical boundary condition along the wire axis direction. It is found that the final structure of Ni nanowires strongly depend on the cooling rates during solidification from liquid. With decreasing cooling rates the final structure of the nanowires varies from amorphous to crystalline via helical multi-shelled structure.


2004 ◽  
Vol 19 (12) ◽  
pp. 3547-3555 ◽  
Author(s):  
J.H. Li ◽  
L.T. Kong ◽  
B.X. Liu

A tight-binding Ni–Hf potential is constructed by fitting some of the ground-state properties, such as the cohesive energy, lattice constants, and the elastic constants of some Ni–Hf alloys. The constructed potential is verified to be realistic by reproducing some static and dynamic properties of the system, such as the melting points and thermal expansion coefficients for the pure Ni and Hf as well as some of the equilibrium compounds, through molecular dynamics simulation. Applying the constructed potential, molecular dynamics simulations are performed to compare the relative stability of the face-centered-cubic (fcc)/hexagonal close-packed (hcp) solid solutions to their disordered counterparts as a function of solute concentration. It is found that the solid solutions become unstable and transform into the disordered states spontaneously, when the solute concentrations exceed the two critical solid solubilities, i.e., 25 at.% Ni for hcp Hf-rich solid solution and 18 at.% Hf for fcc Ni-based solid solution, respectively. This allows us to determine that the glass-forming ability/range of the Ni–Hf system is within 25–82 at.% Ni. Interestingly, simulations also reveal for the first time, that two mixed regions exist in which an amorphous phase coexists with a crystalline phase, and at about 18 at.% Ni, the hcp lattice turns into a new metastable phase identified to be face-centered orthorhombic structure.


2016 ◽  
Vol 874 ◽  
pp. 328-332
Author(s):  
Si Ling Huang ◽  
Zhen Yu Zhang ◽  
Jun Feng Cui ◽  
Song Yang ◽  
Xiao Guang Guo

Nanotwinned (nt) metals exhibit excellent mechanical, electrical and thermal properties, and therefore attract much attentions. To fabricate large area nt surface, the fundamental mechanisms of deformation twinning induced by molecular dynamics (MD) are necessary to be explored. Nevertheless, MD of nt metals currently focus mainly on nt copper (Cu) and other single element metals with face-centered cubic (fcc) structure. In addition, MD simulations are usually performed on a built nt model, rather than from a single crystal, due to the difficulty of forming nanotwins. In this study, a single crystal is constructed in a ternary titanium (Ti) alloy with hexagonal closed-packed (hcp) lattice cell. Deformation twinning of MD simulation is performed in a ternary Ti alloy under nanoindentation from the built single crystal. Zonal structure is found during loading under nanoindentation, and nanograins transforms into nanotwins. Deformation twinning is significant to understanding the formation of nanotwins, as well as fabricating large area nt surface on a Ti alloy.


2008 ◽  
Vol 32 ◽  
pp. 255-258
Author(s):  
Bohayra Mortazavi ◽  
Akbar Afaghi Khatibi

Molecular Dynamics (MD) are now having orthodox means for simulation of matter in nano-scale. It can be regarded as an accurate alternative for experimental work in nano-science. In this paper, Molecular Dynamics simulation of uniaxial tension of some face centered cubic (FCC) metals (namely Au, Ag, Cu and Ni) at nano-level have been carried out. Sutton-Chen potential functions and velocity Verlet formulation of Noise-Hoover dynamic as well as periodic boundary conditions were applied. MD simulations at different loading rates and temperatures were conducted, and it was concluded that by increasing the temperature, maximum engineering stress decreases while engineering strain at failure is increasing. On the other hand, by increasing the loading rate both maximum engineering stress and strain at failure are increasing.


1988 ◽  
Vol 100 ◽  
Author(s):  
Davy Y. Lo ◽  
Tom A. Tombrello ◽  
Mark H. Shapiro ◽  
Don E. Harrison

ABSTRACTMany-body forces obtained by the Embedded-Atom Method (EAM) [41 are incorporated into the description of low energy collisions and surface ejection processes in molecular dynamics simulations of sputtering from metal targets. Bombardments of small, single crystal Cu targets (400–500 atoms) in three different orientations ({100}, {110}, {111}) by 5 keV Ar+ ions have been simulated. The results are compared to simulations using purely pair-wise additive interactions. Significant differences in the spectra of ejected atoms are found.


Sign in / Sign up

Export Citation Format

Share Document