Electrochemical Properties of Al Doped Li(Ni1/3Co1/3Mn1/3)O2

2007 ◽  
Vol 124-126 ◽  
pp. 1023-1026 ◽  
Author(s):  
Seon Hye Kim ◽  
Kwang Bo Shim ◽  
Kyoung Ran Han ◽  
Chang Sam Kim

Al doped Li(Ni1/3Co1/3Mn1/3-xAlx)O2 (x=0.005, 0.01, 0.05) and Li(Ni1/3-x/2Co1/3Mn1/3-x/2Alx)O2 (x=0.01, 0.05) cathode materials for lithium ion batteries were synthesized using an ultrasonic spray pyrolysis and heat treatment. The substitution with Al reduced the content of Mn3+, promoted grain growth, and broadened the particle size distribution of synthesized powders. The initial discharge capacity of cells made with 0.5 mol% Al doped Li(Ni1/3Co1/3Mn1/3-0.005Al0.005)O2 powder was as high as that of the undoped (~180 mAhg-1, 3.04.5 V), and showed an excellent cycle stability. The improvement of the cycle stability was considered to be due to the decrease of Mn3+ in Li(Co1/3Ni1/3Mn1/3-xAlx)O2 by Al doping.

2008 ◽  
Vol 47 (5) ◽  
pp. 1650-1659 ◽  
Author(s):  
Wei-Ning Wang ◽  
Agus Purwanto ◽  
I. Wuled Lenggoro ◽  
Kikuo Okuyama ◽  
Hankwon Chang ◽  
...  

2017 ◽  
Vol 46 (38) ◽  
pp. 12908-12915 ◽  
Author(s):  
Ajay Kumar ◽  
O. D. Jayakumar ◽  
Jagannath Jagannath ◽  
Parisa Bashiri ◽  
G. A. Nazri ◽  
...  

Despite having the same carbon content, Li2Fe0.99Mg0.01SiO4/C delivered the highest initial discharge capacity and also exhibited the best rate capability and cycle stability.


2009 ◽  
Vol 620-622 ◽  
pp. 41-44 ◽  
Author(s):  
Chang Sam Kim ◽  
Sung Ik Hwang ◽  
Shin Woo Kim

The electrochemical properties of LiFePO4 as a cathode of lithium ion batteries considerably depend on a particle size of LiFePO4 and a condition of carbon coating. In this study, LiFePO4 powders were prepared using ultrasonic spray pyrolysis method, and then LiFePO4/C composites were made by infiltrating sucrose solution into LiFePO4 powders, drying, high-energy milling and annealing. The effects of high-energy milling were analyzed by comparing with electrochemical properties of powders synthesized without high-energy milling. It was found that the milling process drastically reduced the particle size of synthesized powders and electrical conductivity, and improved discharge capacity, cycle stability and rate performance.


2011 ◽  
Vol 399-401 ◽  
pp. 1510-1514
Author(s):  
Wen Kui Zhang ◽  
Hui Juan Zeng ◽  
Yang Xia ◽  
Ling Chao Qian ◽  
Bin Zhao ◽  
...  

Amorphous porous FePO4·3H2O micro-spheres were synthesized via a controlled crystallization method. These micro-spheres have a particle size distribution from 10 to 28 μm. There are larger numbers of pores on the surface of FePO4·3H2O microspheres, which are important to synthesize high performance LiFePO4 cathode materials for the application of lithium ion battery. The electrochemical properties of the LiFePO4/C electrode, preparing by using the above porous spherical FePO4·3H2O particles, were measured. The electrochemical results show that the obtained LiFePO4/C has a high initial discharge specific capacity of 141.4 mAhg-1 and good cycling performance at 0.5 C. The microstructural and electrochemical analyses indicate that this porous spherical FePO4·3H2O is a fascinating precursor for preparing LiFePO4/C cathode materials.


2007 ◽  
Vol 336-338 ◽  
pp. 477-480
Author(s):  
Wei Hua Pu ◽  
Xiang Ming He ◽  
Guo Yun Zhang ◽  
Chang Yin Jiang ◽  
Chun Rong Wan ◽  
...  

A novel process was proposed for preparing spinel LiMn2O4 with spherical particles from cheap materials of MnSO4, NaOH, NH3•H2O and LiOH. Its successful preparation started with a carefully controlled crystallization of Mn3O4, leading to the spherical shape of its particles and a high tap density. The mixture of Mn3O4 and LiOH was sintered to produce LiMn2O4 with spherical particle size retention. The spherical particles of spinel LiMn2O4 were of excellent fluidity and dispersivity, and had tap density as high as 2.14 g cm-3 and the initial discharge capacity reaching 128 mAh g-1. Its 15th cycle capacity kept to be 125 mAh g-1.


2020 ◽  
Vol 44 (20) ◽  
pp. 8486-8493 ◽  
Author(s):  
Zhongyue Zi ◽  
Yantao Zhang ◽  
Yangqian Meng ◽  
Ge Gao ◽  
Peiyu Hou

The wide particle size distribution of LLO microspheres assembled from {010} exposed primary grains is proposed to improve their Li+ kinetics and tap-density.


CrystEngComm ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 399-402
Author(s):  
Yanli Fu ◽  
Liqiong Wu ◽  
Shengang Xu ◽  
Shaokui Cao ◽  
Xinheng Li

LiNi0.5Mn1.5O4 microcubes grown from nanowires delivered an initial discharge capacity of 123 mAh g−1 at 1C and maintained 95% of the capacity after 50 cycles due to interfacial effect.


2014 ◽  
Vol 687-691 ◽  
pp. 4331-4334
Author(s):  
Han Ping Zhu ◽  
Peng Ding ◽  
Song Fang ◽  
Hailin Liu

nanoMn3O4was prepared by a simple solvothermal method. The structure, morphology and electrochemical properties of the products were investigated by XRD, SEM and constant current discharge-charge test. The results of XRD and SEM shows that nanoMn3O4is high-purity, and it’s diameter is about 30 nm. It could deliver an initial discharge capacity of 1324.4 mAh g-1at the current density of 25.5 mA g-1, and the specific discharge capacity is 586.9 mAh g-1after 30 cycles at the current density of 30.4 mA g-1.


Sign in / Sign up

Export Citation Format

Share Document