Thermodynamics of Stable and Metastable Cu-O-H Compounds

2011 ◽  
Vol 172-174 ◽  
pp. 973-978 ◽  
Author(s):  
Pavel A. Korzhavyi ◽  
Inna Soroka ◽  
Mats Boman ◽  
Börje Johansson

We apply density functional perturbation theory together with experimental studies in order to investigate the structure and physical properties of possible stable and metastable copper(I) compounds with oxygen and hydrogen. Copper(I) hydride, CuH, is found to be a metastable phase which decomposes at ambient conditions and exhibiting a semiconducting gap in the electronic spectrum. The calculated structure and phonon spectra are found to be in good agreement with experimental data. The phonon spectra of a novel metastable phase, copper(I) hydroxide, are also determined.

2015 ◽  
Vol 775 ◽  
pp. 191-196
Author(s):  
Xiao Wei Lei ◽  
Yong Song ◽  
Kuo Yang ◽  
Hui Zhao

Using first principles approach, we present the structural, vibrational and dielectric properties of α-SiO2. The calculations have been carried out within the density functional perturbation theory and linear response formalism using the norm-concerving pseudopotentials and a plane wave basis. All the vibrational modes identified are in good agreement with experiment. The calculated infrared spectra are also in good agreement with available experimental results both for the positions and the intensities of the main peaks. We find that the modes Eu7 and A2u4 splits in two respectively at high hydrostaticpressures. Then we calculate the infrared spectra under high pressure of different orientations. The vibrational modes in different phase transitions are reported and discussed respectively.


RSC Advances ◽  
2014 ◽  
Vol 4 (49) ◽  
pp. 25827-25834 ◽  
Author(s):  
Y. El Mendili ◽  
B. Minisini ◽  
A. Abdelouas ◽  
J.-F. Bardeau

We report on the first assignment of the Raman-active vibrational modes of mackinawite using Density Functional Perturbation Theory and direct methods with BLYP + dispersion correction. Based on experimental data and calculation results, the Raman bands were assigned as 236 cm−1 (B1g), 256 cm−1 (Eg), 376 cm−1 (A1g) and 395 cm−1 (Eg).


RSC Advances ◽  
2016 ◽  
Vol 6 (15) ◽  
pp. 12158-12168 ◽  
Author(s):  
Sarita Mann ◽  
Pooja Rani ◽  
Ranjan Kumar ◽  
Girija S. Dubey ◽  
V. K. Jindal

Ab initio density functional perturbation theory (DFPT) has been employed to study the thermodynamical properties of pure and doped graphene sheet and the results have been compared with available theoretical and experimental data.


MRS Advances ◽  
2016 ◽  
Vol 1 (17) ◽  
pp. 1227-1232
Author(s):  
I.G. Batyrev ◽  
R.C. Sausa

ABSTRACTWe studied TAGzT theoretically using density functional perturbation theory within the plane-wave-pseudo-potential formalism and experimentally by Raman and IR spectroscopy at ambient and high pressure. The modeled spectra predict reasonably well the experimental spectra at ambient pressure and the Raman vibrational modes at pressures up to 25 GPa. We report the effects of pressure on volume, Raman and IR vibrational modes, and charge distribution of TAGzT.


2015 ◽  
Vol 44 (43) ◽  
pp. 18769-18779 ◽  
Author(s):  
Philippe F. Weck ◽  
Eunja Kim ◽  
Veena Tikare ◽  
John A. Mitchell

The elastic properties and mechanical stability of zirconium alloys and zirconium hydrides have been investigated within the framework of density functional perturbation theory. Results show that the lowest-energy Pn3̄m δ-ZrH1.5 phase is not mechanically stable.


Author(s):  
Longxin Zhang ◽  
Shaowen Chen ◽  
Hao Xu ◽  
Jun Ding ◽  
Songtao Wang

Compared with suction slots, suction holes are (1) flexible in distribution; (2) alterable in size; (3) easy to fabricate and (4) high in strength. In this paper, the numerical and experimental studies for a high turning compressor cascade with suction air removed by using suction holes in the end-wall at a low Mach numbers are carried out. The main objective of the investigation is to study the influence of different suction distributions on the aerodynamic performance of the compressor cascade and to find a better compound suction scheme. A numerical model was first made and validated by comparing with the experimental results. The computed flow visualization and exit parameter distribution showed a good agreement with experimental data. Second, the model was then used to simulate the influence of different suction distributions on the aerodynamic performance of the compressor cascade. A better compound suction scheme was obtained by summarizing numerical results and tested in a low speed wind tunnel. As a result, the compound suction scheme can be used to significantly improve the performance of the compressor cascade because the corner separation gets further suppressed.


Sign in / Sign up

Export Citation Format

Share Document