Effect of the Ceramic Dispersion in the Nickel Matrix Composite Coatings on Corrosion Properties after Plastic Working

2011 ◽  
Vol 183 ◽  
pp. 43-48 ◽  
Author(s):  
Tomasz Cyryl Dyl ◽  
Robert Starosta

Coatings of metal and ceramic composite were applied on the steel specimens using the subsonic process of flame spraying. The specimens were then subjected to both cold and hot plastic working by rolling and also cold pressing by the hydraulic press. Plastic working is an alternative to machining, as the method of finishing of coats applied by flame spraying. The article presents the findings of the research into the possibility of using plastic working (hot and cold rolling and pressing) to obtain the corrosion properties of the flame sprayed Ni-Al alloy coatings and Ni-Al-Al2O3composite coatings. The alloy coatings had a single-phase structure, of the maximum 10% aluminium solubility in the crystal lattice of nickel, whereas in the composite coatings the volume content of non-metallic material Al2O3was 15% and 30 %. After finishing the adhesion reduction, cracks on the surface and cross-sections of coatings was not observed. The largest value of strain hardening of alloy coating Ni-5%Al was stated after pressing. The composite coatings obtain by flame spraying be characterized by big surface roughness (Ra= 13.3 µm). The plastic working caused decrease surface roughness. Minimum value of Raparameter was observed after hot rolling. It was found that maximal roughness was presented after pressing. The corrosion tests were performed in 0.01 M H2SO4solution by potentiokinetic technique. The article presents the effect of dispersion phase of Al2O3on corrosion properties of composite coatings on the nickel base. The corrosion rate was dependent on method of plastic working. The increasing drafts resulted in rise corrosion current density and decrease in value of corrosion potential.

2009 ◽  
Vol 147-149 ◽  
pp. 813-818 ◽  
Author(s):  
Tomasz Cyryl Dyl ◽  
Robert Skoblik ◽  
Robert Starosta

The paper presents the effect of dispersion phase of Al2O3 on selected potential properties of composite coatings on the nickel base. Coatings of Ni-Al-Al2O3 were applied on the steel specimens using the subsonic process of flame spraying. The specimens were then subjected to both cold and hot plastic working by rolling and also cold pressing by the hydraulic press. Plastic working is an alternative to machining, as the method of finishing of coats applied by flame spraying. The paper presents the findings of the research into the possibility of using plastic working (hot and cold rolling and pressing) to obtain the selected properties of the flame sprayed Ni-Al alloy coatings and Ni-Al-Al2O3 composite coatings. The alloy coatings had a single-phase structure, namely boundary solution α , of the maximum 10% aluminium solubility in the crystal lattice of nickel, whereas in the composite coatings the volume content of non-metallic material Al2O3 was: 0, 15, and 30 %.


2011 ◽  
Vol 183 ◽  
pp. 185-192 ◽  
Author(s):  
Robert Starosta

In the paper researches results of corrosion properties of Ni-Al alloy and Ni-Al-Al2O3 composite coatings were presented. Coatings were obtained by flame spraying of "Casto-Dyn 8000" torch. During coatings flame spraying of torch was used a small distance from the substrate. Instead of commonly used spray distance 150 mm, 100 mm was used. The studies in 0.01 M H2SO4 and 3.5% NaCl (artificial seawater) environments were realized. Evaluated coatings are more corrosion resistant in the 3.5% NaCl environment than in the 0.01 M H2SO4. Corrosion current density for alloy coatings in artificial seawater was 20 μA/cm2 and 223 μA/cm2 in an acidic environment. The value of corrosion potential in an environment of 3.5% NaCl is about 200 mV lower than in 0.01 M H2SO4. Composite coatings Ni-Al-Al2O3 were characterized by a lower corrosion current densities and increased resistance than Ni-Al coatings in acidic environment. The presence of alumina in the coating matrix caused increased corrosion current density in sea water environment.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3177
Author(s):  
Tomasz Dyl ◽  
Robert Starosta ◽  
Dariusz Rydz ◽  
Bartosz Koczurkiewicz ◽  
Wioletta Kuśmierska-Matyszczak

In the machine, metallurgical, and shipbuilding industries, steel products with alloy and composite coatings based on nickel may be used. It is expedient to improve the physicochemical properties of the surface layer of products as they have a significant roughness value after thermal spraying. It is therefore important to finish the layers applied by flame spraying, where machining is used for this purpose. However, it causes a loss of coating material, which is quite expensive. Therefore, in order to reduce costs and improve the quality of the surface layer, the finishing treatment of nickel-based coatings by means of plastic working is used. Two types of plastic working were proposed: rolling and burnishing. Numerical and experimental tests of the plastic processing of alloy coatings were carried out. The roughness of the coatings after rolling decreased to 1/25 and 30% strengthening of the alloy coating matrix was determined. After burnishing, roughness was reduced to 1/12 and the alloy coatings were strengthened by 25%. Plastic working by rolling and burnishing has a beneficial effect on the surface quality of the workpiece, not only by significantly improving the roughness, but also by increasing the strength properties of the surface layers.


2013 ◽  
Vol 199 ◽  
pp. 390-395
Author(s):  
Robert Starosta

In the paper researches results of corrosion properties of Ni-Al alloy and Ni-Al-Al2O3 composite coatings were presented. Coatings were obtained by plasma torch. The studies in 0.01 M H2SO4 and 3.5 NaCl environments were realized. Measurements were made following methods: polarization and impedance spectroscopy. Rated coatings are more resistant to the 3.5% NaCl environment than the 0.01 M H2SO4. Corrosion current density for alloy coatings in artificial seawater was 19 μΑ/cm2 and 28 μA/cm2 environment acidic. Impedance spectroscopy studies showed that the alloy and composite coatings are characterized by greater charge transfer resistance in sodium chloride solution than in sulfuric acid solution. The value of corrosion potential in an environment of 3.5% NaCl is about 300 mV lower than 0.01 M H2SO4. Composite coatings Ni-Al-Al2O3 were characterized by a higher corrosion current densities and increased resistance than Ni-Al coatings in 0.01 M H2SO4 solution. It is related to the porosity of composite coatings. It was found little effect of oxide phase participation on corrosion current density and corrosion potential in 3.5% NaCl environment.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 411
Author(s):  
Dunja Ravnikar ◽  
Uroš Trdan ◽  
Aleš Nagode ◽  
Roman Šturm

In the present work, TiC/TiB2/Al composite coatings were synthesized onto a precipitation hardened AlSi1MgMn alloy by laser surface alloying (LSA), using 13.3 J/mm2 and 20 J/mm2 laser energy densities. Microstructure evaluation, microhardness, wear and corrosion performance were investigated and compared with the untreated/substrate Al alloy sample. The results confirmed sound, compact, crackles composite coating of low porosity, with a proper surface/substrate interface. Microstructural analyses revealed the formation of extremely fine nano-precipitates, ranging from of 50–250 nm in the laser melted (LMZ) and large precipitates, accompanied with grain coarsening in the heat-affected zone (HAZ), due to the substrate overheating during the LSA process. Nonetheless, both coatings achieved higher microhardness, with almost 7-times higher wear resistance than the untreated sample as a consequence of high fraction volume of hard, wear resistant TiB2 and TiC phases inside the composite coatings. Further, cyclic polarization results in 0.5 M NaCl aqueous solution confirmed general improvement of corrosion resistance after LSA processed samples, with reduced corrosion current by more than a factor of 9, enhanced passivation/repassivation ability and complete prohibition of crystallographic pitting, which was detected with the untreated Al alloy.


2021 ◽  
Vol 885 ◽  
pp. 95-102
Author(s):  
Evgeny A. Belov ◽  
Konstantine V. Nadaraia ◽  
Dmitry V. Mashtalyar ◽  
Igor M. Imshinetsky ◽  
Andrey P. German ◽  
...  

The paper presents results of the composite polymer-containing layers formation by plasma electrolytic oxidation (PEO) with subsequent application of the superdispersed polytetrafluoroethylene (SPTFE) aqueous suspension. The corrosion properties and adhesion of coatings have been investigated using potentiodynamic polarization and scratch tests. Incorporation of SPTFE decreased the corrosion current density for composite layers by more than 3 orders of magnitude in comparison with the base PEO-coating and increased the coatings adhesion by 30 %.


2007 ◽  
Vol 546-549 ◽  
pp. 1111-1116 ◽  
Author(s):  
Ming An Chen ◽  
Xuan Xie ◽  
Guo Fu Xu ◽  
Hui Zhong Li ◽  
Xin Ming Zhang

2024-T6 Al alloy sheet s were modified by bis-[triethoxysilylpropyl] tetrasulfide (BTESPT) silane film to improve the corrosion resistance. Fourier-Transform Reflection Absorption (FTIR-RA) spectroscopy was used for structural characterization of BTESPT silane film formed on surface of the sheet. Potentiodynamic polarization and immersion test in 3.5% NaCl solution were used for evaluating the corrosion performances of the silane film. The results showed that the film formed after curing at 120 °C for 40 min was cross-linked through Si-O-Si and that it was covered on the entire surface of the sheet. The content of elements S and Si on the Al2CuMg particles is a little higher that of on the matrix. The strong peak at 1032 cm-1 indicated that the film was linked to the sheet by Si-O-Al. Compared to the untreated case, the corrosion current density of the sheet treated with the silane film was reduced by close to 2 orders. Treatment of BTESPT silane can provide about 670 h protection of corrosion for the sheet in 3.5% NaCl water solution.


2014 ◽  
Vol 1004-1005 ◽  
pp. 733-736
Author(s):  
Zu Xiao Yu ◽  
Ya Li Sun ◽  
Xin Huang

To improve the anti-corrosion properties of the AZ91D magnesium alloy, the electroless plating Ni-Co-P on the AZ91D magnesium alloy is necessary. The influences of additives (ammonium fluoride (NH4F) and hexamethylenetetramine (HMTA)) on deposition rate, corrosion rate, acid resistance, corrosion current, corrosion potential and webster hardness of electroless plating Ni-Co-P alloy coating, were investigated using electrochemical methods, etc. The results show that the deposition rate and corrosion resistance properties of electroless plating Ni-Co-P are obviously improved when the additives, including NH4F (2%) and hexamethylenetetramine (HMTA, 1%), are added into plating solution, respectively. In addition, the global particles in the Ni-Co-P coating become smaller with the addition of NH4F by comparison with no additives and coatings are dense, uniform and defect-free.


2014 ◽  
Vol 941-944 ◽  
pp. 1585-1588
Author(s):  
Zu Xiao Yu ◽  
De Tao Zheng ◽  
Hong Guo ◽  
Yong Liu ◽  
Yuan Liang Luo ◽  
...  

To improve the wear resistance and anti-corrosion properties of the aluminum, the electroless plating Ni-W-Mo-P alloy on the aluminum is necessary. The influences of heat treatment and additives (stabilizers) on the porosity, deposition rate, corrosion current, corrosion potential, microhardness and wear resistance of electroless plating Ni-W-Mo-P alloy coating, were investigated using electrochemical methods, etc. The results show that the deposition rate and anti-corrosion properties of electroless plating Ni-W-Mo-P are improved when the stabilizers, including KI (1mg/L) and “KIO3 (1mg/L) + Pb (Ac)2 (1mg/L)”, are added into bath, respectively. In addition, the maximum hardness (902 HV) and good wear resistance of Ni-W-Mo-P coatings are obtained when heated at 400°C (1h). However, its corrosion resistance is worse. Its microhardness is also obviously improved after heated at 200°Cfor 6 h, and the microhardness reaches to 950 HV.


2015 ◽  
Vol 723 ◽  
pp. 860-863
Author(s):  
Zu Xiao Yu ◽  
Shi Xiong Hao ◽  
Lan Li ◽  
De Tao Zheng

To improve the anti-corrosion properties of the aluminum, the electroless plating Ni-W-P on the aluminum is necessary. Investigation was made on the influences of additives (stabilizers and surfactants) on the deposition rate, weight loss corrosion rate, porosity, corrosion current, corrosion potential, electrochemical impedance spectroscopy (EIS) and webster hardness of electroless plating Ni-W-P alloy coating by electrochemical methods, etc. The results show that the deposition rate and anti-corrosion properties of electroless plating Ni-W-P are obviously improved when the stabilizer KIO3 (1mg/L) is added into plating solution. In addition, the Ni-W-P coating become more dense, uniform and defect-free with the addition of stabilizer KIO3 by comparison with no stabilizer. When the surfactant SDBS (50mg/L) added into bath, the corrosion resistance properties of electroless plating Ni-W-P alloy coating are also obtained.


Sign in / Sign up

Export Citation Format

Share Document