Response of a Manganite-Based Magnetic Tunnel Structure to Microwave Radiation

2012 ◽  
Vol 190 ◽  
pp. 125-128
Author(s):  
Nikita V. Volkov ◽  
M.V. Rautskiy ◽  
E.V. Eremin ◽  
G.S. Patrin ◽  
P.D. Kim ◽  
...  

We demonstrate that a magnetic tunnel structure irradiated by microwaves can generate a significant voltage signal due to the rectification effect. The measurements were carried out using current-in-plane geometry with a current flowing parallel to the interfaces in the structure. A value of the microwave-induced voltage strongly depends on a bias current and can be driven by a magnetic field. The rectification effect is discussed both in classical terms of nonlinearity of the current-voltage characteristic and using a mechanism that involves the interplay between the spin-polarized current and magnetization dynamics in the magnetic tunnel structure.

Author(s):  
С.О. Слипченко ◽  
А.А. Подоскин ◽  
О.С. Соболева ◽  
В.С. Юферев ◽  
В.С. Головин ◽  
...  

AbstractThe current–voltage characteristics of n ^+-GaAs/ n ^0-GaAs/ N ^0-AlGaAs/ N ^+-AlGaAs/ n ^+-GaAs isotype heterostructures and n ^+-GaAs/ n ^0-GaAs/ n ^+-GaAs homostructures are studied. It is shown that, for a heterostructure under reverse bias providing the injection of electrons from n ^0-GaAs into N ^0-AlGaAs, the maximum operating voltage reaches a value of 48 V at a thickness of the N ^0-AlGaAs layer of 1 . 0 μm, and the current–voltage characteristic has no region of negative differential resistance. The operation of a homostructure is accompanied by a transition to the negative-differential-resistance region at a voltage of 10 V. Theoretical analysis in terms of the energy-balance model demonstrated that the reverse-biased isotype heterostructure has no negative-differential-resistance region because, in this case, the field domain does not collapse in contrast to what occurs in homostructures.


Author(s):  
I.A. Tarasov ◽  
M.V. Rautskii ◽  
I.A. Yakovlev ◽  
M.N. Volochaev

AbstractSelf-assembled growth of α-FeSi_2 nanocrystal ensembles on gold-activated and gold-free Si(001) surface by molecular beam epitaxy is reported. The microstructure and basic orientation relationship (OR) between the silicide nanocrystals and silicon substrate were analysed. The study reveals that utilisation of the gold as catalyst regulates the preferable OR of the nanocrystals with silicon and their habitus. It is shown that electron transport from α-FeSi2 phase into p-Si(001) can be tuned by the formation of (001)—or (111)—textured α-FeSi2 nanocrystals ensembles. A current-voltage characteristic of the structures with different preferable epitaxial alignment (α-FeSi_2(001)/Si(100) and α-FeSi_2(111)/Si(100)) shows good linearity at room temperature. However, it becomes non-linear at different temperatures for different ORs due to different Schottky barrier height governed by a particular epitaxial alignment of the α-FeSi_2/ p -Si interfaces.


2021 ◽  
Vol 25 (4) ◽  
pp. 450-462
Author(s):  
T. S. Mukhametgaleeva ◽  
D. S. Fedosov

We develop a simplified model of a current transformer based on its current-voltage characteristic. This model is applicable for studying relay protection operation in transient conditions when no high accuracy or consideration of current transformer magnet core hysteresis is required. The model was developed in MATLAB Simulink using elements of the SimPowerSystems and Simscape libraries. The model uses the transformation ratio and current-voltage characteristic obtained during operational tests of a current transformer. Calculation experiments with non-linear resistance found that a currentvoltage characteristic of voltage and current values can be used to model a current transformer, rather than instantaneous values. The following conditions were simulated: for nominal currents in current transformer windings to check the transformation ratio; for opened secondary winding; with current transformer saturation by increasing secondary loading; increasing the primary current ratio and presence of aperiodic current at the start of the transition process. It was found that the developed current transformer model allows for a correct imitation of all the above conditions. To verify the model, secondary current oscillograms were obtained using real current transformers 10 kV at known primary current, which were compared with nominal oscillograms in the model. The discrepancy between the results of calculational and real experiments was no more than 10% in amplitude values, with high-quality matching obtained for current charts in the model and real current transformers. A significant advantage of the developed model is that its setting requires no information on magnet core cross-section, power line length, steel grade, and the number of current transformer winding turns.


Sign in / Sign up

Export Citation Format

Share Document