Deposition and Characterization of Nanostructural IrOx by RF Sputtering

2012 ◽  
Vol 194 ◽  
pp. 129-132 ◽  
Author(s):  
Kwong Kau Tiong ◽  
Cheng Hsien Lin ◽  
Yi Min Chen ◽  
Ying Sheng Huang ◽  
Kuei Yi Lee ◽  
...  

Large surface area nanostructural IrOx films were deposited on stainless steel substrates by reactive radio frequency magnetron sputtering using Ir metal target. The structural and spectroscopic properties of the nanostructural IrOx were characterized. The micrographs of field emission scanning electron microscopy showed the formation of folded leaves with chiffon-like structure for the as-deposited samples. X-ray photoelectron spectroscopy analysis provided the information of the oxidation states and the stoichiometry of IrOxNL. Raman spectra revealed the amorphous-like phase of the as-deposited nanostructural IrOx. The chiffon-like structure provides ultra-high surface area for electrical charge storage which makes the IrOxNL as an attractive candidate for the supercapacitor application.

1992 ◽  
Vol 271 ◽  
Author(s):  
Peter W. Lednor ◽  
Rene De Ruiter ◽  
Kees A. Emeis

ABSTRACTHigh surface area silicon oxynitrides have been prepared by nitrida- tion of silica with ammonia. Characterization by Fourier-transform infrared spectroscopy has allowed quantitative determination of hydroxyl, amido and imido groups. Data obtained by X-ray photoelectron spectroscopy show that the nitrogen is well distributed in the surface of the materials.


2017 ◽  
Vol 36 (3) ◽  
pp. 44-53
Author(s):  
G. D. Akpen ◽  
M. I. Aho ◽  
N. Baba

Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ,7000C and 8000C for 30 minutes. The same procedure was repeated for 60, 90, 120 and 150 minutes respectively. Activation was done using impregnationratios of 1:12, 1:6, 1:4, 1:3, and 1:2 respectively of ZnCl2 to carbonised Albizia saman pods by weight. The activated carbon was then dried in an oven at 1050C before crushing for sieve analysis. The following properties of the produced Albizia saman pod activated carbon (ASPAC) were determined: bulk density, carbon yield, surface area and ash, volatile matter and moisture contents. The highest surface area of 1479.29 m2/g was obtained at the optimum impregnation ratio, carbonization time and temperature of 1:6, 60 minutes and 5000C respectively. It was recommended that activated carbon should be prepared from Albizia saman pod with high potential for adsorption of pollutants given the high surface area obtained.Keywords: Albizia saman pod, activated carbon, carbonization, temperature, surface area


1999 ◽  
Vol 179 (1-2) ◽  
pp. 203-216 ◽  
Author(s):  
Eiji Hayashi ◽  
Eiji Iwamatsu ◽  
Mohammad Elias Biswas ◽  
Yuzo Sanada ◽  
Shakeel Ahmed ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document