Structural Studies of the Relaxed Amorphous Phase in the Fe81B14Nb5 Alloy

2013 ◽  
Vol 203-204 ◽  
pp. 380-385 ◽  
Author(s):  
Małgorzata Karolus

Amorphous alloys based on iron, obtained by melt spinning technique, are modern and very promising soft magnetic materials. The thermal annealing at temperatures closed to the crystallization temperature can cause an increase of magnetic permeability more than 10 times i.e. the so called enhancement of soft magnetic properties effect (ESMP). It is usually explained by formation of iron nanocrystallites in amorphous surroundings or by formation of the relaxed amorphous phase. Such a microstructure leads to averaging out of magnetic anisotropy and cause the ESMP.

2002 ◽  
Vol 102 (2) ◽  
pp. 309-316 ◽  
Author(s):  
P. Kwapuliński ◽  
Z. Stokłosa ◽  
A. Chrobak ◽  
J. Rasek ◽  
G. Haneczok

Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 304
Author(s):  
Jonghee Han ◽  
Jihyun Hong ◽  
Seoyeon Kwon ◽  
Haein Choi-Yim

In the Fe-Co alloy system, the addition of Cr improves the glass-forming ability (GFA) with superior soft magnetic properties such as high saturation magnetization (Ms) and low coercivity (Hc). In addition, Cr is considered to be an important factor for improving the corrosion resistance of Fe-based amorphous alloy. Therefore, in the present study, we investigated the GFA, soft magnetic properties, and corrosion resistance of the as-spun ribbons in [Co0.075Fe0.675B0.2Si0.05]100−xCrx (x = 0–8) alloy system. The ribbons were produced using the melt-spinning technique and were characterized by X-ray diffraction, differential scanning calorimetry, thermomechanical analysis, and vibrating sample magnetometer. The Co-Fe-B-Si-Cr alloys exhibited high thermal stability and a high Ms of 0.93–1.53 T. Corrosion properties were evaluated by cyclic voltammetry. The addition of Cr improved the corrosion resistance of the alloys. The alloys with a higher Cr content exhibited a higher corrosion resistance. The optimum combination with soft magnetic properties and corrosion resistance of Fe-co based amorphous alloys can be utilized for extensive fields of application through a variation of Cr contents.


2012 ◽  
Vol 57 (1) ◽  
pp. 265-270 ◽  
Author(s):  
P. Pietrusiewicz ◽  
M. Nabiałek ◽  
M. Szota ◽  
K. Perduta

Microstructure and Soft Magnetic Properties of Fe61Co10Y8Me1B20(Where Me = W, Zr or Nb) Amorphous AlloysThe microstructure and the soft magnetic properties of the multi-component Fe61Co10Y8Me1B20amorphous alloys (where Me = W, Zr or Nb) have been investigated; the samples were in the form of ribbons of 3 mm width and 30 μm thickness. The samples were produced using a single-roller melt-spinning method. The alloy composition was investigated using an X-ray diffractometer. The amorphous nature of the entire volume of all the as-quenched samples was confirmed. From the magnetic measurements performed using the ‘LakeShore’ vibrating sample magnetometer, magnetic parameters such as: coercivity, saturation of the magnetization for the as-quenched samples were derived. All of the investigated alloys displayed good soft magnetic properties, making them perfect materials for magnetic cores. The core losses for different values of magnetic field and operating frequency were also measured. It was shown that the investigated alloys featured lower core losses than commercially-used classical FeSi steel.


2010 ◽  
Vol 163 ◽  
pp. 225-228 ◽  
Author(s):  
P. Kwapuliński ◽  
Lucjan Pająk ◽  
Józef Lelątko ◽  
G. Badura ◽  
Józef Rasek ◽  
...  

The aim of the present paper is to find correlations between structural changes and electrical, mechanical and magnetic properties in Fe78Si13B9, Fe76Nb2Si13B9, Fe75Cu1Nb2Si13B9, Fe75Cu1Zr1Co1Si13B9, amorphous and nanocrystalline alloys obtained by melt spinning technique. The influence of annealing on material brittleness, magnetic and electric properties was examined. It was found that the optimization of soft magnetic properties effect is a thermally activated process and its diffusion parameters were determined. It was shown that for the alloys containing Cu, Nb and Zr as alloying additions, the optimization process can be attributed to formation of a nanocrystalline phase. In contrast to this for the FeSiB and FeNbSiB alloys the optimization process should be related to the relaxed amorphous phase.


1994 ◽  
Vol 75 (10) ◽  
pp. 6940-6942 ◽  
Author(s):  
P. Quintana ◽  
E. Amano ◽  
R. Valenzuela ◽  
J. T. S. Irvine

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4222 ◽  
Author(s):  
Zhongyuan Wu ◽  
Chenxu Wang ◽  
Yin Zhang ◽  
Xiaomeng Feng ◽  
Yong Gu ◽  
...  

High-entropy alloys (HEAs) with soft magnetic properties are one of the new candidate soft magnetic materials which are usually used under an alternating current (AC) magnetic field. In this work, the AC soft magnetic properties are investigated for FeCoNixCuAl (1.0 ≤ x ≤ 1.75) HEAs. The X-ray diffraction (XRD) and scanning electron microscope (SEM) show that the alloy consists of two phases, namely a face-centred cubic (FCC) phase and a body-centred cubic (BCC) phase. With increasing Ni content, the FCC phase content increased. Further research shows that the AC soft magnetic properties of these alloys are closely related to their phase constitution. Increasing the FCC phase content contributes to a decrease in the values of AC remanence (AC Br), AC coercivity (AC Hc) and AC total loss (Ps), while it is harmful to the AC maximum magnetic flux density (AC Bm). Ps can be divided into two parts: AC hysteresis loss (Ph) and eddy current loss (Pe). With increasing frequency f, the ratio of Ph/Ps decreases for all samples. When f ≤ 150 Hz, Ph/Ps > 70%, which means that Ph mainly contributes to Ps. When f ≥ 800 Hz, Ph/Ps < 40% (except for the x = 1.0 sample), which means that Pe mainly contributes to Ps. At the same frequency, the ratio of Ph/Ps decreases gradually with increasing FCC phase content. The values of Pe and Ph are mainly related to the electrical resistivity (ρ) and the AC Hc, respectively. This provides a direction to reduce Ps.


2005 ◽  
Vol 475-479 ◽  
pp. 2219-2222 ◽  
Author(s):  
Ji Fan Hu ◽  
Hong Wei Qin ◽  
Minhua Jiang ◽  
Bo Li ◽  
Dongliang Zhao ◽  
...  

FeCuNbSiB and FeZrBCu nanocrystalline ribbons can be obtained directly through the melt- spinning technique without additional annealing processes. The giant magnetoimpedance can be observed in FeCuNbSiB and FeZrBCu as quenched ribbons. The addition of Cu improves the nano-crystallization of a-Fe(Si) or a-Fe phase and reduces the grain size in FeCuNbSiB and FeZrBCu as quenched ribbons, which enhances the magnetoimpedance via increasing the variation of permeability under fields. The present experimental results reveal a novel route to fabricate the Fe based nanocrystalline soft magnetic materials with giant magnetoimpedance effect.


Sign in / Sign up

Export Citation Format

Share Document