Definition of Amorphous Tapes Magnetic Condition Using Temperature Dependence of the Saturation Magnetic Moment

2014 ◽  
Vol 215 ◽  
pp. 268-271
Author(s):  
Vladimir S. Pechnikov

In article results of research of the saturation magnetic moment temperature dependence of ferromagnetic amorphous tapes on an iron and cobalt basis, and also one not ferromagnetic amorphous tape are described. It is shown that in an initial condition not all atoms of magnetic elements are in a ferromagnetic phase. Temperature dependence of the saturation moment of a ferromagnetic phase of amorphous tapes is well described by Brillouin's function. Possibility of quantitative definition of part of the magnetic atoms forming not ferromagnetic phase of a tape is proved. It is shown that the tape on the iron basis, containing about 20% of chrome, not ferromagnetic in an initial condition, consists of the superparamagnetic nanoparticles including about 10 atoms of iron.

Author(s):  
Tomohiro Yasuda ◽  
Komori Taro ◽  
Haruka Mitarai ◽  
Syuta Honda ◽  
Sambit Ghosh ◽  
...  

Abstract The ferrimagnet Mn4N forms a family of compounds useful in spintronics. In a compound comprising non-magnetic and magnetic elements, one basically expects the compound to become ferromagnetic when the proportion of the magnetic element increases. Conversely, one does not expect ferromagnetism when the proportion of the non-magnetic element increases. Surprisingly, Mn4N becomes ferromagnetic at room temperature when the Mn content is decreased by the addition of In atoms, a non-magnetic element. X-ray magnetic circular dichroism measurement reveals that the magnetic moment of Mn atoms at face-centered sites, Mn(II), reverses between x = 0.15 and 0.27 and aligns parallel to that of Mn atoms at corner sites, Mn(I), at x = 0.27 and 0.41. The sign of the anomalous Hall resistivity also changes between x = 0.15 and 0.27 in accordance with the reversal of the magnetic moment of the Mn(II) atoms. These results are interpreted from first-principles calculation that the magnetic moment of Mn(II) sites which are the nearest neighbors to the In atom align to that of Mn(I) sites.


2021 ◽  
Author(s):  
Nitin Kumar ◽  
Mayank Kapoor ◽  
Prasan Kumar Panda ◽  
Yogesh Singh ◽  
Ajeet Singh Bhadoria

Background The age-old definition of fever was derived using cross-sectional population surveying utilizing old techniques without considering symptomatology. However, the diagnosis of fever must be made only in the presence of associated symptoms that can distinguish it from the mere asymptomatic physiologic rise of temperature. Association of the temperature values with the symptoms to define the cut-off for fever is need of the hour. Methods A longitudinal study on the healthy population of Northen-India were followed-up over 1-year. Participants were advised for self-monitoring of oral temperature with a standard digital thermometer in either left or right sublingual pocket and record it in the thermometry diary. The study was considered complete if the participant had all the three phases of the study (i.e. non-febrile, febrile, and post-febrile phases) or completed the duration of the study. Results Per protocol analysis done for febrile participants (n=144, temperature recordings= 23851). The mean febrile phase temperature was 100.25 ± 1.440F. A temperature of 99.10F had maximum diagnostic accuracy for feeling feverish (98.2%), along with one (98.3%) or two (99%) associated symptoms. Summer and spring months showed higher temperatures (100.38 ± 1.44 v/s 99.80 ± 1.49, P<0.001), whereas no significant temperature difference could be noted amongst the gender. Conclusions A revised cut-off for the temperature to decide fever is hereby proposed: 99.10F along with one or two associated symptoms. This is going to redefine fever in the modern era completely.


2014 ◽  
Vol 215 ◽  
pp. 292-297
Author(s):  
Alexey Y. Samardak ◽  
Vladimir S. Pechnikov ◽  
Ekaterina V. Sukovatitsina ◽  
Alexander S. Samardak ◽  
Alexey V. Ognev ◽  
...  

We report on experimental results of the temperature dependence of inductive (total) magnetic moment and remanent magnetic moment at saturation field for electrodeposited nanocrystalline Ni films with thicknesses ranging from 350 nm to 20 μm. We have found that the amplitude of roughness and crystallite size significantly affected the remanent saturation magnetic moment and coercivity.


2019 ◽  
Vol 99 (1) ◽  
pp. 803-811 ◽  
Author(s):  
Boumediene Hamzi ◽  
Eyad H. Abed

AbstractThe paper studies an extension to nonlinear systems of a recently proposed approach to the definition of modal participation factors. A definition is given for local mode-in-state participation factors for smooth nonlinear autonomous systems. While the definition is general, the resulting measures depend on the assumed uncertainty law governing the system initial condition, as in the linear case. The work follows Hashlamoun et al. (IEEE Trans Autom Control 54(7):1439–1449 2009) in taking a mathematical expectation (or set-theoretic average) of a modal contribution measure over an uncertain set of system initial state. Poincaré linearization is used to replace the nonlinear system with a locally equivalent linear system. It is found that under a symmetry assumption on the distribution of the initial state, the tractable calculation and analytical formula for mode-in-state participation factors found for the linear case persists to the nonlinear setting. This paper is dedicated to the memory of Professor Ali H. Nayfeh.


Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3366
Author(s):  
Daniel Suchet ◽  
Adrien Jeantet ◽  
Thomas Elghozi ◽  
Zacharie Jehl

The lack of a systematic definition of intermittency in the power sector blurs the use of this term in the public debate: the same power source can be described as stable or intermittent, depending on the standpoint of the authors. This work tackles a quantitative definition of intermittency adapted to the power sector, linked to the nature of the source, and not to the current state of the energy mix or the production predictive capacity. A quantitative indicator is devised, discussed and graphically depicted. A case study is illustrated by the analysis of the 2018 production data in France and then developed further to evaluate the impact of two methods often considered to reduce intermittency: aggregation and complementarity between wind and solar productions.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ted Sichelman

Many scholars have employed the term “entropy” in the context of law and legal systems to roughly refer to the amount of “uncertainty” present in a given law, doctrine, or legal system. Just a few of these scholars have attempted to formulate a quantitative definition of legal entropy, and none have provided a precise formula usable across a variety of legal contexts. Here, relying upon Claude Shannon's definition of entropy in the context of information theory, I provide a quantitative formalization of entropy in delineating, interpreting, and applying the law. In addition to offering a precise quantification of uncertainty and the information content of the law, the approach offered here provides other benefits. For example, it offers a more comprehensive account of the uses and limits of “modularity” in the law—namely, using the terminology of Henry Smith, the use of legal “boundaries” (be they spatial or intangible) that “economize on information costs” by “hiding” classes of information “behind” those boundaries. In general, much of the “work” performed by the legal system is to reduce legal entropy by delineating, interpreting, and applying the law, a process that can in principle be quantified.


RSC Advances ◽  
2018 ◽  
Vol 8 (35) ◽  
pp. 19732-19738 ◽  
Author(s):  
Jinsen Han ◽  
Dongdong Kang ◽  
Jiayu Dai

The migration and magnetic properties of the bilayer graphene with intercalation compounds (BGICs) with magnetic elements are theoretically investigated based on first principles study.


Sign in / Sign up

Export Citation Format

Share Document