THINCASTTM; Providing Strong, Lightweight Castings for Automobiles and Other Applications

2014 ◽  
Vol 217-218 ◽  
pp. 294-301
Author(s):  
Alois Franke ◽  
John L. Jorstad

Aluminium Rheinfelden has improved the competitiveness of semi solid processing by developing a casting process & alloy combination that is capable of ultra thin, ultra light parts having attractive engineering properties without need for full heat treatment. The THINCASTTM rheocasting process, together with Rheinfeldens Magsimal-59 alloy has been demonstrated capable of producing moderate sized castings with only 1-2 mm wall sections, thus providing a 30-50% reduction in traditional-process part weight. THINCASTTM can be adapted to a variety of die casting machines and will enable competitively improving the quality of conventional high pressure die castings as well as creating entirely new applications.

2006 ◽  
Vol 519-521 ◽  
pp. 351-358 ◽  
Author(s):  
Roger N. Lumley ◽  
Robert G. O'Donnell ◽  
Dayalan R. Gunasegaram ◽  
Michel Givord

Conventionally produced high pressure die-cast (HPDC) components are not considered to be heat treatable because gases entrapped during the die-casting process expand during solution treatment causing unacceptable surface blistering. Components may also become dimensionally unstable. Both these effects prevent the heat treatment of die-castings as these phenomena are detrimental to the visual appearance, mechanical properties and utilisation of the component. Recent work has revealed a process window in which HPDC aluminium alloys that are capable of responding to age hardening may be successfully heat treated without encountering these problems. As a result, improvements of greater than 100% in the tensile properties are possible, when compared with the as-cast condition. The new heat treatment schedules are described for HPDC parts of different size and shape, the role of chemistry on ageing is discussed and microstructural development during heat treatment examined†.


2014 ◽  
Vol 680 ◽  
pp. 11-14
Author(s):  
Ke Ren Shi ◽  
Sirikul Wisutmethangoon ◽  
Jessada Wannasin ◽  
Thawatchai Plookphol

In this study, semi-solid Al-Mg-Si alloy (AC4C) was produced by using the Gas Induced Semi-Solid (GISS) die casting process. The tensile strength and ductility of the semi-solid die cast Al alloy (GISS-DC) after T6 heat treatment were investigated and compared with those of the conventional liquid die casting (CLDC). The microstructures of GISS-DC and CLDC observed by an optical microscopy were presented. The ultimate tensile strength (UTS) and yield strength (0.2% YS) of GISS-DC are compatible with those of the CLDC. However, the GISS-DC has better ductility than the CLDC, this may be due to the smaller and more globular primary α-Al phase and rounder shaped-Si particle microstructures presented in the GISS-DC. Common shrinkage pores and defects were also observed by SEM from the fracture surfaces of both alloys.


2012 ◽  
Vol 246-247 ◽  
pp. 918-923
Author(s):  
Xiao Fang Ruan

Die casting technology is applied widely for mass production of non-ferrous metal parts. How to guarantee the quality of die castings is always a concerned topic. A quality control system for die casting machine was developed based on statistical analysis of technology parameters. Firstly the original data is acquired from die casting machine and the technology curves are displayed. Secondly, the technology parameters are identified automatically and a database of technology parameters is established. Thirdly, a statistical analysis based on the database is performed. The statistics parameters of expecta -tion and deviation are figured out and the probability distribution diagrams for technology parameters are displayed. Finally, Tolerances for technology parameters are figured out and then the system will monitor the die casting process according to the tolerances. A practical system realization in a die casting machine is demonstrated by its monitoring interfaces. Statistical information and on-line monitoring provided by this system are helpful to guarantee the quality of die castings.


2010 ◽  
Vol 649 ◽  
pp. 473-479 ◽  
Author(s):  
Jenő Dúl ◽  
Richárd Szabó ◽  
Attila Simcsák

Quality of high pressure die castings is influenced by a lot of factors. Among them, the most important ones are the melt-, and die temperatures. This paper shows a data acquisition system, developed for measuring the melt and die temperatures and the results of the temperature measurements obtained under variable conditions. Evaluation of the relationship between the interrelated temperatures and the casting properties is based on analyzing the structure of the castings.


2017 ◽  
Vol 898 ◽  
pp. 1254-1260
Author(s):  
Hong Xing Lu ◽  
Qiang Zhu ◽  
Da Quan Li ◽  
Fan Zhang

Semi-solid die casting technology has great advantages at defects control and has been successfully used to produce high quality aluminum alloy components for several years. In this process, semi-solid metal with high apparent viscosity and low plunger velocity are used to avoid surface turbulence which is the main source of entrapped gas in conventional die casting processes. But, entrapped gas still has other sources, such as melting, pouring, surface flooding and confluence weld. Solution heat treatment is always used to strengthen semi-solid die castings. The entrapped gas leads to blister defects, which directly decreases the acceptance rate of semi-solid die castings. So, the entrapped gas is still a serious issue in semi-solid die casting process. We studied the floating behavior of entrapped gas bubble in semi-solid metal. Two floating models were established for gas bubbles with different sizes. These models were used to analyze the possibility of entrapped gas escaping from semi-solid metal in casting practice. The results showed that entrapped gas from feed billet could not escape from the semi-solid metal in the casting process of impeller, which was proved by experiment results. These results emphasized the importance of clean melt and semi-solid metal. Some advices were given at last for avoiding or removing the entrapped gas in semi-solid die casting process.


2014 ◽  
Vol 1019 ◽  
pp. 67-73 ◽  
Author(s):  
Levy Chauke ◽  
Kalenda Mutombo ◽  
Gonasagren Govender

<span><p>Semi-solid metal forming of aluminium alloys has demonstrated the capability to produce near net shaped high integrity components. Anodising of these components for aesthetic and/or improved corrosion resistance is specified by some designers or users of this technology. The corrosion behaviour of fully anodised and partially anodised A356 aluminium alloy plates produced using the CSIR Rheo-High Pressure Die Casting (CSIR-RHPDC) process was investigated using immersion testing in a 3.5% NaCl solution with pH = 7. Optical microscope equipped with image analysis software and scanning electron microscope (SEM) equipped with Energy Dispersive X-ray Spectroscopy (EDS) were used to evaluate the behaviour of the corroded samples. The fully anodised sample showed that the anodised surface displayed some surface degradation. This degradation was more severe on the anodised surface with surface liquid segregation (SLS), but provided sufficient protection to prevent corrosion of the base metal. The partially anodised sample showed severe corrosion of the based metal with the corrosion concentrated in the silicon rich eutectic and SLS regions.</p> <span style="font-family: Times New Roman; font-size: medium;" face="Times New Roman" size="3"> </span>


2013 ◽  
Vol 765 ◽  
pp. 195-199
Author(s):  
Shou Xun Ji ◽  
Bo Jiang ◽  
Wen Chao Yang ◽  
Zhong Yun Fan

Melt quenched high pressure die casting (MQ-HPDC) is a new die casting process developed recently for improving the casting quality of the conventional HPDC process. In the MQ-HPDC process, an alloy melt with a specified dose and superheat is quenched by directly pouring the alloy melt into a preheated metallic container. The thermal mass and preheating temperature of the container is selected so that the alloy melt is quenched just below the alloy liquidus and heterogeneous nucleation takes place during the melt quenching. The quenched alloy melt is then fed immediately into the shot sleeve for component casting. In this paper we present the MQ-HPDC process and the resultant microstructures and mechanical properties of a MQ-HPDC A356 alloy.


2015 ◽  
Vol 729 ◽  
pp. 108-113
Author(s):  
Stefan Gaspar ◽  
Jan Pasko

In the pressure die casting process, a great attention is paid to a die castings quality improvement. This quality has to be ensured with a great reliability and, at the same time, it is necessary to apply control methods to a technological process which provide a complete picture of a die casting process as well as internal quality of the produced die castings. It requires control of the present technological factors of a pressure die casting process. The contribution deals with the effect of die casting plunger velocity inside a filling chamber on mechanical properties of a die casting product from EN AC 47100 alloy.


Sign in / Sign up

Export Citation Format

Share Document