Strength Analysis of Shipping Container Floor with Gooseneck Tunnel under Heavy Cargo Load

2016 ◽  
Vol 252 ◽  
pp. 81-90 ◽  
Author(s):  
Arkadiusz Rzeczycki ◽  
Bogusz Wiśnicki

Currently, guidelines for safely loading shipping containers with heavy cargo in the gooseneck tunnel region do not exist. This work investigates the influence of the construction type of the gooseneck tunnel on the strength of the floor of the shipping container. The main objective is to develop guidelines for loading shipping containers with heavy cargo in the gooseneck tunnel region. This paper investigates strength of the floor using finite element method. The finite element analysis shows how the container's floor responds in the given loading scenarios.

2020 ◽  
Vol 313 ◽  
pp. 00034
Author(s):  
Pavol Lengvarský ◽  
Martin Mantič ◽  
Róbert Huňady

The special type of C-hook is investigated in this paper. The C-hook is designed to carry a special load, where is not possible to use classical hooks or chain slings. The designed hook is consisted of two arms that ensure the stability of the load being carried. The finite element analysis is performed for the control of the stress and deformation state in the whole hook. The fatigue analysis is performed for the check of a lifetime of C-hook.


2012 ◽  
Vol 538-541 ◽  
pp. 2953-2956
Author(s):  
Ya Li ◽  
Guang Sheng Ren

The static and stability analysis of steel structure were taken according to steel structure work platform’s requirements and structural characteristics in a subway parking space by using the software model which is established by Pro/E software and implanted into the finite element analysis software ANSYS Workbench. The maximum deformation and stress in design load of the steel structure were calculated and the linear stress strength analysis of the key parts was carried out, also both the analysis and testing of the supporting pillar’s stability were performed. The results show that the structure model established by Pro/E and the calculation method are reasonable. Moreover, the calculation results are of high accuracy. The profile size is properly chosen and the structure bearing capacity and deformation meet the design requirements.


Author(s):  
Yuya Omiya ◽  
Tadatoshi Watanabe ◽  
Masahiro Fujii ◽  
Haruka Yamamoto

In this study, the creep deformation in the threaded joint are discussed using a finite element method, and evaluated the influence of the dimensions of bolt and clamped parts. The stress and creep strain distributions are calculated using the Finite Element Analysis. The occurrence and the propagation of the creep deformation and influence of the creep deformation on the axial bolt force were discussed. It was found that the creep deformation occurred at the bearing surfaces and the engagement screw thread mainly at the elevated temperature. The creep deformation was a cause of the reduction in axial bolt force.


2014 ◽  
Vol 525 ◽  
pp. 731-735 ◽  
Author(s):  
Qian Peng Han ◽  
Bo Peng

Finite element method(FEM) have been widely used in modern mechanical design,mesh generation is an important part of the finite element analysis,this article discussed the process of mesh generation through two practical cases and put forward some issues we should pay more attention to.


2013 ◽  
Vol 658 ◽  
pp. 335-339
Author(s):  
Somsak Siwadamrongpong ◽  
Supakit Rooppakhun ◽  
Pakorn Burakorn ◽  
Natchaya Murachai

Presently, large passenger vehicles are known to have high risk of an injury due to accident and insufficient of safety regulation. The strength of seat is one of important issues that affect to injury level of passenger. Therefore, suitable structure strength and design of the seat are very important to prevent injuries and passenger life. This study was to evaluate strength of the seat structure for bus according to preliminary safety regulation of Department of Land Transport. Finite element analysis is employed by using a static load. The seat model was simplified and simulated. Stress and impact scenario between seat-back and back of manikin will be investigated. The strength and deflection of the seat will be evaluated. This study is expected to provide the seat model which will be safe and satisfied according to the regulation.


2021 ◽  
Author(s):  
Muhammad Ardalani-Farsa

The finite element method has been applied in the area of the cervical spine since the 1970's. In the present research work, the finite element method was employed to model, validate and analyze a complete model of the human cervical spine from C1 to T1, including interconnecting intervertebral discs, ligaments and joints. The developed model of the cervical spine was validated by the experimental results presented in the literature. As the values obtained from the finite element analysis were mainly in the range of motion observed in the experiment; it was concluded that the finite element results were consistent with the reported data in the literature. Next, the validated model of the cervical spine was examined under physiological loading modes to locate the areas bearing maximum stress in the cervical spine. Finally, to study the effect of variations in the material properties on the output of the finite element analysis, a material property sensitivity study was conducted to the C3-T1 model of cervical spine. Changes in the material properties of the soft tissues affected the external and internal responses of both the hard and soft tissue components, while changes in those of the hard tissues only affected the internal response of hard tissues.


2014 ◽  
Vol 487 ◽  
pp. 378-384
Author(s):  
Feng Yi Lu ◽  
Xin Xin Liu ◽  
Ge Ning Xu

In view of the problem that new type crushing ripper installation of tamping equipment in circulation under the action of different load working multiple cases may occur structural fatigue damage, analysis of its force characteristic, establishment ripper rack compression bending component model, according to the working condition of the most unfavorable load combinations, using the allowable stress method to calculate structural fatigue strength; the combined effect of road load spectrum and vibrating load is also taken into consideration, then statics analysis and fatigue analysis of new type crushing ripper are calculated with the finite element analysis software Ansys Workbench. The results show that theoretical calculations are in accordance with the finite element analysis results, it evidences that the fatigue strength analysis method of crushing ripper is feasible and correct. It provides a reference for the anti-fatigue optimization design of new type crushing ripper, to guarantee its meet the operational requirements under of bad conditions.


2006 ◽  
Vol 129 (4) ◽  
pp. 763-770 ◽  
Author(s):  
Xiaoguang Huang ◽  
Yanyun Chen ◽  
Kai Lin ◽  
Musa Mihsein ◽  
Kevin Kibble ◽  
...  

Accurately predicting the burst strength is very important in the casing design for the oil and gas industry. In this paper, finite element analysis is performed for an infinitely long thick walled casing with geometrical imperfections subjected to internal pressure. A comparison with a series of full-scale experiments was conducted to verify the accuracy and reliability of the finite element analysis. Furthermore, three predictive equations were evaluated using the test data, and the Klever equation was concluded to give the most accurate prediction of burst strength. The finite element analysis was then extended to study the effects of major factors on the casing burst strength. Results showed that the initial eccentricity and material hardening parameter had important effects on the burst strength, while the effect of the initial ovality was small.


2011 ◽  
Vol 199-200 ◽  
pp. 858-864 ◽  
Author(s):  
Liu Bin Zhou ◽  
Tie Jun Yang ◽  
Wan Peng Yuan ◽  
Hui Shi ◽  
Zhi Gang Liu

A large flexible vibration isolation structure is presented in this thesis, and experimental modal test based on the finite element analysis is carried out in order to find out the vibration characteristics of it. Results show that the natural frequencies and mode shapes calculated by finite element method basically conform to those measured from experimental modal test. Some suggestion to vibration active control in further research is also provided.


2013 ◽  
Vol 367 ◽  
pp. 165-168 ◽  
Author(s):  
Oldrich Sucharda ◽  
Jiri Brozovsky

The paper describes and compares selected failure and plasticity conditions of concrete. The CEB-FIB condition, the von Mises plasticity condition with modification for concrete and the Chen-Chen condition are studied. The conditions are compared in 2D and two of these conditions are also used for numerical analysis of a deep beam. The software BSA is chosen for the analysis in the paper. The software BSA is based on the finite element method.


Sign in / Sign up

Export Citation Format

Share Document