Investigation on Liquid Segregation during Rheo-Casting Process Based on Eulerian-Granular Multiphase Model

2016 ◽  
Vol 256 ◽  
pp. 113-118
Author(s):  
Jiao Jiao Wang ◽  
Qiang Zhu ◽  
Fan Zhang ◽  
Da Quan Li ◽  
You Feng He

A crucial problem concerned with the semi-solid forming process is the liquid segregation phenomena during shape formation, especially for rheo-casting process. Liquid segregation occurs due to the separation phenomena of the solid grain and the liquid phase. In this work, using commercial finite element software, the liquid segregation during rheo-casting process was numerically investigated by Eulerian-granular multiphase model based on the comparable results of single phase model, Eulerian-granular two-phase and three-phase model, along with Eulerian-granular DDPM three-phase model. In the study, solid grains and liquid phases were regarded as rigid material and non-Newtonian fluid at microscale, separately. This validation was experimentally proved and also compared to the proposed relationship of power law, Herschel-Bulkley model with yield stress at macroscale.

2005 ◽  
Vol 475-479 ◽  
pp. 377-380
Author(s):  
P.K. Seo ◽  
Byung Min Kim ◽  
Chung Gil Kang

The parts manufactured by die casting process usually contain liquid segregation and porosities. To solve these problems, the semi-solid forming process has been applied. The process enables material in the semi-solid state to be completely filled, and parts with the complicated shape to be fabricated by applying relatively low pressure. This process is necessary in order to control the microstructure of the billet as well as to achieve the desired semi-solid billet state. In this study, a horizontal high-frequency induction heating device which can be fabricated by semi-solid forming irrespective of a billet's size was developed. A globular structure of the reheated billet and a billet's temperature distribution during the reheating process for A356 were investigated.


2007 ◽  
Vol 340-341 ◽  
pp. 611-618 ◽  
Author(s):  
C.G. Kang ◽  
P.K. Seo ◽  
J.W. Bae

Rheology forming is a novel processing method of semi-solid processing, which is different from traditional mold forging and conventional casting process. The rheological behavior of metallic alloys containing both solid and liquid phases was investigated with the low and high solid fraction ranges. Its obvious advantages are easier to produce complex work pieces because of excellent forming ability, more flexible to shape, and more compact in the inner quality for its high pressure. This research paper presents the theory of the rheology forming process and the results of the finite element simulation of rheology forming for aluminum alloys. In this proposed theoretical models for the rheology forming process involve simultaneous calculations performed with solid phase deformation and the liquid phase flow analysis. To analyze the rheology process, the new flow stress curves of rheology aluminum alloys and the viscosity for the simulation of two-phase flow phenomena have been proposed with as a function of temperature.


1997 ◽  
Vol 35 (7) ◽  
pp. 139-145 ◽  
Author(s):  
Jiann-Yuan Ding ◽  
Shian-Chee Wu

The objective of this study is to quantify the effects of humic acid solution infiltration on the transport of organochlorine pesticides (OCPs) in soil columns using a three-phase transport model. From experimental results, it is found that the dissolved organic carbon enhances the transport of OCPs in the soil columns. In the OCPs-only column, the concentration profiles of OCPs can be simulated well using a two-phase transport model with numerical method or analytical solution. In the OCPs-DOC column, the migrations of aldrin, DDT and its daughter compounds are faster than those in the OCPs-only column. The simulation with the three-phase model is more accurate than that with the two-phase model. In addition, significant decrease of the fluid pore velocities of the OCPs-DOC column was found. When DOC leachate is applied for remediation of soil or groundwater pollution, the decrease of mean pore velocities will be a crucial affecting factor.


2022 ◽  
Vol 92 (2) ◽  
pp. 187
Author(s):  
В.Г. Лебедев

The problems of constructing a multiphase model of the phase field for the processes of phase transitions of the first kind are considered. Based on the Gibbs energy of the complete system expressed in terms of antisymmetrized combinations of phase fields, it is shown that the equations of dissipative dynamics of a locally nonequilibrium system follow from the condition of its monotonic decrease, preserving the normalization of the sum of variables by one and the following properties of the previously known two-phase model.


Author(s):  
L. K. Doraiswamy

The first three chapters of this part dealt with two-phase reactions. Although catalysts are not generally present in these systems, they can be used in dissolved form in the liquid phase. This, however, does not increase the number of phases. On the other hand, there are innumerable instances of gas-liquid reactions in which the catalyst is present in solid form. A popular example of this is the slurry reactor so extensively employed in reactions such as hydrogenation and oxidation. There are also situations where the solid is a reactant or where a phasetransfer catalyst is immobilized on a solid support that gives rise to a third phase. A broad classification of three-phase reactions and reactors is presented in Table 17.1 (not all of which are considered here). This is not a complete classification, but it includes most of the important (and potentially important) types of reactions and reactors. The thrust of this chapter is on reactions and reactors involving a gas phase, a liquid phase, and a solid phase which can be either a catalyst (but not a phasetransfer catalyst) or a reactant, with greater emphasis on the former. The book by Ramachandran and Chaudhari (1983) on three-phase catalytic reactions is particularly valuable. Other books and reviews include those of Shah (1979), Chaudhari and Ramachandran (1980), Villermaux (1981), Shah et al. (1982), Hofmann (1983), Crine and L’Homme (1983), Doraiswamy and Sharma (1984), Tarmy et al. (1984), Shah and Deckwer (1985), Chaudhari and Shah (1986), Kohler (1986), Chaudhari et al. (1986), Hanika and Stanek (1986), Joshi et al. (1988), Concordia (1990), Mills et al. (1992), Beenackers and Van Swaaij (1993), and Mills and Chaudhari (1997). Doraiswamy and Sharma (1984) also present a discussion of gas-liquid-solid noncatalytic reactions in which the solid is a reactant. In Chapter 7 we saw how Langmuir-Hinshelwood-Hougen-Watson (LHHW) models are normally used to describe the kinetics of gas-solid (catalytic) or liquid-solid (catalytic) reactions, and in Chapters 14 to 16 we saw how mass transfer between gas and liquid phases can significantly alter the rates and regimes of these two-phase reactions.


1991 ◽  
Vol 58 (1) ◽  
pp. 75-86 ◽  
Author(s):  
H. A. Luo ◽  
Y. Chen

An exact solution is given for the stress field due to an edge dislocation embedded in a three-phase composite cylinder. The force on the dislocation is then derived, from which a set of simple approximate formulae is also suggested. It is shown that, in comparison with the two-phase model adopted by Dundurs and Mura (1964), the three-phase model allows the dislocation to have a stable equilibrium position under much less stringent combinations of the material constants. As a result, the so-called trapping mechanism of dislocations is more likely to take place in the three-phase model. Also, the analysis and calculation show that in the three-phase model the orientation of Burgers vector has only limited influence on the stability of dislocation. This behavior is pronouncedly different from that predicted by the two-phase model.


2015 ◽  
Vol 1760 ◽  
Author(s):  
Naoki Takata ◽  
Nobuaki Sekido ◽  
Masao Takeyama ◽  
John H. Perepezko

ABSTRACTIn the present study, the crystallographic features of bcc/T1/T2 three-phase microstructure in a directionally solidified Mo–32.2Nb–19.5Si–4.7B (at.%) alloy have been examined by electron back-scattering diffraction (EBSD) analysis. The alloy was directionally solidified using an optical floating zone (OFZ) furnace in a flowing Ar gas atmosphere at a constant growth rate of 10 mm/hour. The microstructure of the directionally solidified alloy is characterized by an elongated T2 phase surrounded by inclusions of bcc and T1 phases with an interwoven morphology. The T2 grains are faceted on the (001) planes and elongated along the [110] direction. The T2 phase has an orientation relationship of (001)T2 // (011)bcc and [130]T2 // [2${\rm{\bar 1}}$1]bcc with the bcc phase, whereas any particular orientation relationships of T1 phase with bcc and T2 phases have not been found. These crystallographic features of bcc/T1/T2 three-phase microstructure suggest that the primary T2 phase crystallizes and grows along the [110] direction in liquid phase, followed by nucleation of the bcc phase on the interface between T2 and liquid phases, resulting in bcc/T1 two-phase eutectic reaction surrounding the elongated T2 phase.


2021 ◽  
Author(s):  
Makki Abdelmouleh ◽  
Ilyes Jedidi

This chapter summarizes the study of the filler (ie copper) effect on LDPE phasic composition in LDPE/Cu composites prepared in solution. During this research work, a particular effort is focused on the use of DSC under non-standard conditions. Therewith, the presence of copper microparticles has a great effect on the network phase than on the crystalline long-range-order phase of LDPE structure. Furthermore, LDPE phasic composition in absence and presence of copper microparticles is investigated by FTIR spectroscopy followed by a spectral simulation of the band that appeared at 720 cm−1 corresponding to the CH2. Anywise, the two-phase model confirmed that no variation is observed of LDPE phase composition for all copper contents into LDPE/Cu films. However, with the three-phase model the orthorhombic phase fraction was found to be constant compared to the fraction of amorphous and that of network phase were found to increase and decrease respectively with increase in the copper particle load in the film. Overall, the thermal and structural behavior of LDPE in presence of copper particles allows this type to be used as phase change materials (PCMs) by adding a paraffin fraction in the LDPE/Cu composite. An update of the most relevant work carried out in the field of phasic characterization of polyethylene is presented in this chapter.


Sign in / Sign up

Export Citation Format

Share Document