Ultrasonic Bulk Waves Measurements for Defect Detection of Composite Materials

2017 ◽  
Vol 268 ◽  
pp. 401-406
Author(s):  
Nurul Wahida Zainal Abidin Sham ◽  
Md Supar Rohani

The defect detection in composite material is important for its quality control where the hidden defect such as crack, corrosion, notch, holes, void and porosity can develop. In this paper, the ultrasonic bulk wave measurements of longitudinal and shear waves are used to identify defect in the multilayered composite material. This study employs pulse echo technique and utilized angle beam transducer. The composite material model investigated in this contribution are made of 24 mm and 12 mm thick Aluminium plates with a width of 100 mm and a length of 203 mm which are separated with an approximately 1 mm thick oil layer. A simulated defect is created in the composite test material by drilling a hole with 2.5 mm diameter and 3 mm depth on the bottom surface of the third layer material. Finding indicates that the defect is located at 53.39 mm from transducer and the percentage difference of the defect location compared to the calculation method is 7%. It indicates that the proposed method can be use to detect defect in multilayered composite material within 10% accuracy compared to the calculation method.

2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.


2018 ◽  
Vol 183 ◽  
pp. 01051
Author(s):  
Hakim Abdulhamid ◽  
Paul Deconinck ◽  
Pierre-Louis Héreil ◽  
Jérôme Mespoulet

This paper presents a comprehensive mechanical study of UHMWPE (Ultra High Molecular Weight Polyethylene) composite material under dynamic loadings. The aim of the study is to provide reliable experimental data for building and validate the composite material model under impact. Four types of characterization tests have been conducted: dynamic in-plane tension, out-of-plane compression, shear tests and plate impact tests. Then, several impacts of spherical projectiles have been performed. Regarding the numerical simulation, an intermediate scale multi-layered model (between meso and macro scale levels) is proposed. The material response is modelled with a 3d elastic orthotropic law coupled with fibre damage model. The modelling choice is governed by a balance between reliability and computing cost. Material dynamic response is unconventional [1, 2]: it shows large deformation before failure, very low shear modulus and peeling strength. Numerical simulation has been used both in the design and the analysis of tests. Many mechanical properties have been measured: elastic moduli, failure strength and EOS of the material. The numerical model is able to reproduce the main behaviours observed in the experiment. The study has highlighted the influence of temperature and fibre slipping in the impact response of the material.


2016 ◽  
Vol 29 (4) ◽  
pp. 04015083 ◽  
Author(s):  
Robert K. Goldberg ◽  
Kelly S. Carney ◽  
Paul DuBois ◽  
Canio Hoffarth ◽  
Joseph Harrington ◽  
...  

2010 ◽  
Vol 4 (7) ◽  
pp. 505-513 ◽  
Author(s):  
Silvia Scaglione ◽  
Erica Lazzarini ◽  
Cristina Ilengo ◽  
Rodolfo Quarto

2018 ◽  
Vol 52 (25) ◽  
pp. 3445-3460 ◽  
Author(s):  
Robert K Goldberg ◽  
Kelly S Carney ◽  
Paul DuBois ◽  
Canio Hoffarth ◽  
Bilal Khaled ◽  
...  

The need for accurate material models to simulate the deformation, damage, and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress- or strain-based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.


Sign in / Sign up

Export Citation Format

Share Document