scholarly journals Study of the ballistic behaviour of UHMWPE composite material: experimental characterization and numerical simulation

2018 ◽  
Vol 183 ◽  
pp. 01051
Author(s):  
Hakim Abdulhamid ◽  
Paul Deconinck ◽  
Pierre-Louis Héreil ◽  
Jérôme Mespoulet

This paper presents a comprehensive mechanical study of UHMWPE (Ultra High Molecular Weight Polyethylene) composite material under dynamic loadings. The aim of the study is to provide reliable experimental data for building and validate the composite material model under impact. Four types of characterization tests have been conducted: dynamic in-plane tension, out-of-plane compression, shear tests and plate impact tests. Then, several impacts of spherical projectiles have been performed. Regarding the numerical simulation, an intermediate scale multi-layered model (between meso and macro scale levels) is proposed. The material response is modelled with a 3d elastic orthotropic law coupled with fibre damage model. The modelling choice is governed by a balance between reliability and computing cost. Material dynamic response is unconventional [1, 2]: it shows large deformation before failure, very low shear modulus and peeling strength. Numerical simulation has been used both in the design and the analysis of tests. Many mechanical properties have been measured: elastic moduli, failure strength and EOS of the material. The numerical model is able to reproduce the main behaviours observed in the experiment. The study has highlighted the influence of temperature and fibre slipping in the impact response of the material.

2011 ◽  
Vol 279 ◽  
pp. 181-185 ◽  
Author(s):  
Guo Hua Zhao ◽  
Qing Lian Shu ◽  
Bo Sheng Huang

This paper proposes a material model of AS4/PEEK, a typical thermoplastic composite material, for the general purpose finite element code—ANSYS, which can be used to predict the mechanical behavior of AS4/PEEK composite structures. The computational result using this model has a good agreement with the test result. This investigation can lay the foundation for the numerical simulation of thermoplastic composite structures.


Author(s):  
Huiyun Li ◽  
Guangyu Shi

The steel plate reinforced concrete (SC) walls and roofs are effective protective structures in nuclear power plants against aircraft attacks. The mechanical behavior of the concrete in SC panels is very complicated when SC panels are under the action of impacting loading. This paper presents a dynamic material model for concrete subjected to high-velocity impact, in which pressure hardening, strain rate effect, plastic damage, and tensile failure are taken into account. The loading surface of the concrete undergoing plastic deformation is defined based on the extended Drucker–Prager strength criterion and the Johnson–Cook material model. The associated plastic flow rule is utilized to evaluate plastic strains. Two damage parameters are introduced to characterize, respectively, the plastic damage and tensile failure of concrete. The proposed concrete model is implemented into the transient nonlinear dynamic analysis code ls-dyna. The reliability and accuracy of the present concrete material model are verified by the numerical simulations of standard compression and tension tests with different confining pressures and strain rates. The numerical simulation of the impact test of a 1/7.5-scale model of an aircraft penetrating into a half steel plate reinforced concrete (HSC) panel is carried out by using ls-dyna with the present concrete model. The resulting damage pattern of concrete slab and the predicted deformation of steel plate in the HSC panel are in good agreement with the experimental results. The numerical results illustrate that the proposed concrete model is capable of properly charactering the tensile damage and failure of concrete.


2019 ◽  
Vol 9 (11) ◽  
pp. 2372 ◽  
Author(s):  
Andrea Sellitto ◽  
Salvatore Saputo ◽  
Francesco Di Caprio ◽  
Aniello Riccio ◽  
Angela Russo ◽  
...  

Composite laminates are characterized by high mechanical in-plane properties and poor out-of-plane characteristics. This issue becomes even more relevant when dealing with impact phenomena occurring in the transverse direction. In aeronautics, Low Velocity Impacts (LVIs) may occur during the service life of the aircraft. LVI may produce damage inside the laminate, which are not easily detectable and can seriously degrade the mechanical properties of the structure. In this paper, a numerical-experimental investigation is carried out, in order to study the mechanical behavior of rectangular laminated specimens subjected to low velocity impacts. The numerical model that best represents the impact phenomenon has been chosen by numerical–analytical investigations. A user defined material model (VUMAT) has been developed in Abaqus/Explicit environment to simulate the composite intra-laminar damage behavior in solid elements. The analyses results were compared to experimental test data on a laminated specimen, performed according to ASTM D7136 standard, in order to verify the robustness of the adopted numerical model and the influence of modeling parameters on the accuracy of numerical results.


2018 ◽  
Vol 52 (25) ◽  
pp. 3445-3460 ◽  
Author(s):  
Robert K Goldberg ◽  
Kelly S Carney ◽  
Paul DuBois ◽  
Canio Hoffarth ◽  
Bilal Khaled ◽  
...  

The need for accurate material models to simulate the deformation, damage, and failure of polymer matrix composites under impact conditions is becoming critical as these materials are gaining increased use in the aerospace and automotive communities. To attempt to improve the predictive capability of composite impact simulations, a next generation material model is being developed for incorporation within the commercial transient dynamic finite element code LS-DYNA. The material model, which incorporates plasticity, damage, and failure, utilizes experimentally based tabulated input to define the evolution of plasticity and damage and the initiation of failure as opposed to specifying discrete input parameters such as modulus and strength. The plasticity portion of the composite constitutive model is based on an extension of the Tsai-Wu composite failure model into a generalized yield function. For the damage model, a strain equivalent formulation is used to allow for the uncoupling of the deformation and damage analyses. For the failure model, a tabulated approach is utilized in which a stress- or strain-based invariant is defined as a function of the location of the current stress state in stress space to define the initiation of failure. Failure surfaces can be defined with any arbitrary shape, unlike traditional failure models where the mathematical functions used to define the failure surface impose a specific shape on the failure surface. In the current paper, the complete development of the failure model is described and the generation of a tabulated failure surface for a representative composite material is discussed.


2021 ◽  
Vol 260 ◽  
pp. 03021
Author(s):  
Jun He ◽  
Meng Cao ◽  
Zhishu Wang ◽  
Fanglin Cong

Although the carbon fiber reinforced composite material has high specific strength and stiffness, design-versatility, anti-corrosion and other excellent features, but the impact resistance of composite structures is poor. Therefore, the composite laminates low-speed damage analysis has important significance. Based on a three-dimensional analysis theory of cumulative damage, using the commercial finite element analysis software ABAQUS to establish laminates subjected to low velocity impact finite element model. according to the numerical results and the consistency of the test results, shows that the used model of the article is reasonable and accurate, and the numerical simulation method is verified to be feasible. Finally, through the numerical simulation of process of laminated plates low speed impact damage, the damage characteristics and damage mechanism of the laminates at different times are analyzed, and the forming reasons and expanding rules of the main damage forms of fiber damage and matrix damage are revealed.


2017 ◽  
Vol 31 (12) ◽  
pp. 1634-1660 ◽  
Author(s):  
Sandeep Medikonda ◽  
Ala Tabiei

A micro-mechanical composite material model is developed to simulate the behavior of unidirectional composites under impact loading conditions in the nonlinear finite element solver (LS-DYNA®). The nonlinear strain rate and pressure dependency in the composite material model is accounted by the resin, which uses previously developed state variable viscoplastic equations. These equations have been originally developed for metals; however, these are modified to account for the significant contributions of hydrostatic stresses typically observed in polymers. The material model also uses a continuum damage mechanics (CDM) based failure model to incorporate the progressive post-failure behavior. A set of Weibull distribution functions are used to quantify this behavior, and a methodology of assigning physical significance to the choice of damage/softening parameters used in these functions is presented. The impact response of composite laminate plates has been simulated and compared to the experiments. It has been observed that the predicted results compare favorably to the experiments.


Author(s):  
Jim Lua ◽  
William Gregory

Composite ship structures are subjected to both the low and high velocity impact during their service life. The dynamic impact can generate fiber, matrix and/or delamination damage inside a woven fabric composite laminate, which may significantly reduce its stiffness and strength. Both the structural mechanics and fracture mechanics based models cannot fully capture the impact damage evolution due to coexistence of continuum and discrete damage. The stress and strain at the element level cannot be directly used to predict the constituent damage and the resulting mechanism driven stiffness degradation. In this paper, a hybrid discrete and continuum damage model is developed and numerically implemented within the LS-DYNA environment via a user-defined material model. The continuum damage progression and its associated stiffness degradation are predicted based on the constituent stress/strain and their associated failure criteria while the delamination damage is numerically captured via a cohesive interface model.


Author(s):  
Ge He ◽  
Yangqing Dou ◽  
Xiang Guo ◽  
Yucheng Liu

Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 μm), regular copper (grain size ≈ 30 μm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance then the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT regions-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive material model is used to predict the plastic deformation of Cu and Ni; JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material’s failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.


2021 ◽  
Vol 68 (2) ◽  

The EHL-simulation methods for homogenous materials have to be enhanced to model heterogeneous fiber-reinforced plastics. Because of micro and macro scale material properties, several parameters have to be considered in contact models, e.g. thermal dependency of material properties, material heterogeneity and material non-linearity or viscoelasticity. This paper shows the impact of the stiffness on the micro and macro scale in a fiber-reinforced plastic-steel contact on EHL-simulation results. Especially in the area of micromechanics, the correct combination of the material model and the topography shows a significant influence on the calculated contact stiffness and hence the flow factor maps. Depending on the fiber orientation and film thickness, the contact stiffness variates by a factor of nearly 7.


2012 ◽  
Vol 226-228 ◽  
pp. 855-861
Author(s):  
Huan Jun Wang ◽  
Chao Wang ◽  
Yong Wei Yue ◽  
Deng Cheng Sun

In order to calculate the damage effect of the surface warships subjected to modern anti-ship missile precisely, the solid modeling technology is applied firstly to simulating the penetration explosion of the anti-ship missile in this paper and initial detonation parameter of typical anti-ship weapon is solved based on mixed explosion theory for typical warhead and the explosion load is simulated by corrected sphere-feeding method. On that basis, material model and physical equation referred to numerical simulation of warship structure damage with the whole circuit described in detail and specifically. Also presented is typical computational example calculated by the general finite element procedure LS-DYNA which indicates qualitative coincidence from the impact effect to response tend between the numerical simulation results and experimental data and the method can be applied to the engineering calculation to analysis the damage characteristic subjected to penetration load which provides the basis for the research of ship blast-resistant.


Sign in / Sign up

Export Citation Format

Share Document